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the unfolding ofa few main ideas and by
minimizing references to other develop-

ments, the author has been able to fol-

low Egyptian, Babylonian, Chinese,

Indian, Greek, Arabian, and Western
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has based his account of nineteenth cen-

tury advances on persons and schools
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Hammurabi, Bernoulli, Fermat, Euler,
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INTRODUCTION

1. Mathematics is a vast adventure in ideas; its his-

tory reflects some of the nobiest thoughts of countless

generations. It was possible to condense this history

into a book of less than three hundred pages only by

subjecting ourselves to strict discipline, sketching the

unfolding of a few main ideas and minimizing reference

to other developments. Bibliographical details had to

be restricted to an outline; many relatively important

authors—Roberval, Lambert, Schwarz—had to be by-

passed. Perhaps the most crippling restriction was the

insufficient reference to the general cultural and socio-

logical atmosphere in which the mathematics of a period

matured—or was stifled. Mathematics has been in-

fluenced by agriculture, commerce and manufacture, by
warfare, engineering and philosophy, by physics and

by astronomy. The influence of hydrodynamics on func-

tion theory, of Kantianism and of surveying on ge-

ometry, of electromagnetism on differential equations,

of Cartesianism on mechanics and of scholasticism on
the calculus could only be indicated in a few sentences

—

or perhaps a few words—yet an understanding of the

course and content of mathematics can only be reached
if all these determining factors are taken into considera-

tion. Often a reference to the literature has had to re-

place an historical analysis. Our story ends by 1900, for

we do not feel competent to judge the work of our

contemporaries.

We hope that despite these restrictions we have been
able to give a fairly honest description of the main
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trends in the development of mathematics throughout

the ages and of the social and cultural setting in which

it took place. The selection of the material was, of

course, not exclusively based on objective factors, but

was influenced by the author's likes and dislikes, his

knowledge and his ignorance. As to his ignorance, it

was not always possible to consult all sources first-hand

;

too often second- or even third-hand sources had to be

used. It is therefore good advice, not only with respect

to this book, but with respect to all such histories, to

check the statements as much as possible with the

original sources. This is a good principle for more rea-

sons than one. Our knowledge of authors such as Euclid,

Diophantos, Descartes, Laplace, Gauss, or Riemann
should not be obtained exclusively from quotations or

histories describing their works. There is the same
invigorating power in the original Euclid or Gauss as

there is in the original Shakespeare, and there are places

in Archimedes, in Format, or in Jacobi which are as

beautiful as Horace or Emerson.

Among the principles which have led the author in

the presentation of his material are the following:

1. Stress the continuity and affinity of the Oriental

civilizations, rather than the mechanical divisions

between Egyptian, Babylonian, Chinese, Indian,

and Arabian cultures.

2. Distinguish between established fact, hypothesis,

and tradition, especially in Greek mathematics.

3. Relate the two trends in Renaissance mathematics,

the arithmetical-algebraic and the "fluctional," re-
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spectively, to the commercial and the engineering

interests of the period.

4. Base the exposition of Nineteenth Century mathe-

matics on persons and schools rather than on sub-

jects [Here Felix Klein's" history could be used as

a primary guide. An exposition by subjects can be

found in the books by Cajori and Bell, or with the

more technical details, in the "Encyklopajdie der

mathematischen Wissenschaften" (Leipzig, 1898-

1935, 24 vols.) and in Pascal's "Repertorium der

hoheren Mathematik" (Leipzig 1910-29, 5 vols.).]

2. We list here some of the most important books on

the history of mathematics as a whole. Such a list is

superfluous for those who can consult G. Sarton, The

Study of the History of Mathematics (Cambridge, 1936,

103 pp.) which not only has an interesting introduction

to our subject but also has complete bibliographical

information.

English texts to be consulted are:

R. C. Archibald, Outline of the History of Mathematics

(Amer. Math. Monthly 561, Jan. 1949, 6th ed.)

This issue of 1 14 pp. contains an excellent summary and many

bibliographic references.

F. Cajori, A History of Mathematics (London, 2nd

ed., 1938).

This is a standard text of 514 pp.

!>• E. Smith, History of Mathematics (London, 1923-

25, 2 vols.).

This book is mainly restricted to elementary mathematics but
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has references concerning all leading mathematicians. It contains

many illustrations.

E. T. Bell, Men. of Mathematics (Pelican Books,

1953).

E. T. Bell, The Development of Mathematics (New York-

London, 2nd ed., 1945).

These two books contain a wealth of material, both on the mathe-

maticians and on their works. The emphasis of the second book
is on modern mathematics.

Dealing mainly with elementary mathematics are:

V. Sanford, A Short History of Mathematics (London,

1930).

W. W. Rouse Ball, A Short Account of the History of

Mathematics (London, 6th. ed., 1915).

An older, very readable but antiquated text.

The standard work on the history of mathematics is

still:

M. Cantor, Vorlesungen iiber Geschichte der Mathematik

(Leipzig, 1900-08, 4 vols.).

This enormous work, of which the fourth volume was written by
a group of specialists under Cantor's direction, covers the history

of mathematics until 1799. It is here and there antiquated and
often incorrect in details, but it remains a good book for a first

orientation.

Corrections by G. Enestrdm a. o. in the volumes of "Bibliotheca

mathematica."

Other German books are

:

H. G. Zeuthen, Geschichte der Mathematik im Altertum

INTRODUCTION XV

und MittelaUer (Copenhagen, 1896; French ed.,

Paris, 1902).

H. G. Zeuthen, Geschichte der Mathematik im XVI und

XVII Jahrhundert (Leipzig, 1903).

S. Giinther—H. Wieleitner, Geschichte der Mathematik

(Leipzig, 2 vols.). I (1908) written by Giinther; II

(1911-21, 2 parts) written by Wieleitner. Ed. by

Wieleitner (Berlin, 1939).

J. Tropfke, Geschichte der Elementar-Mathematik (Leip-

zig, 2d ed., 1921-24, 7 vols.; vols. I-IV in 3d ed.

1930-34).

Die Kultur der Gegenwart III, 1 (Leipzig-Berlin, 1912);

contains:

H. G. Zeuthen, Die Mathematik im Altertum und im MittelaUer;

A. Voss, Die Beziehungen der Mathematik zur allgemeinen Kultur;

H. E. Timerding, Die Verbreitung mathemalUchen Wissene und
mathematUcher Auffassung.

The oldest text book in the history of mathematics is

in French:

J. E. Montucla, Histoire des matMmatiques (Paris, new
ed., 1799-1802, 4 vols.).

This book, first published in 1758 (2 vols.), also deals with applied
mathematics. It is still good reading.

A good Italian book is:

G
- Loria, Storia delle matematiche (Turin, 1929-33,

3 vols.).
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There also exist anthologies of mathematical works:

D. E. Smith, A Source Book in Mathematics (London,

1929).

H. Wicleitncr, Mathematischc Quellenbucher (Berlin,

1927-29, 4 small vols.).

A. Speiser, Klassisclie Stiicke der Mathematik (Zurich-

Leipzig, 1925).

There also exist histories of special subjects of which

we must mention

:

L. E. Dickson, History of the Theory of Numbers (Wash-

ington, 1919-27, 3 vols.).

T. Muir, The Theory of Determinants in the Historical

Order of Development (London, 1900-23, 4 vols.);

with supplement, Contrilnitions to the History of

Determinants 1900-20 (London, 1930).

A. von Braunmiihl, Vorlesungen iiber Geschichte der Truj-

onometrie (Leipzig, 1900-03, 2 vols.).

T. Dant/.ig. Number. Tlie Language afSciena (New
York, 3rd ed., 1943, also London, 1940).

J. L. Coolidgc, A History of Geometrical Methods (Ox-

ford, 1940).

G. Loria, II passalo e il presenle delle principali tcorie

geometriche (Turin, 1th. ed., 1931).

G. Loria, Storia delta geomeiria descrittiva dalle origini

sino ai giorni ywstri (Milan, 1921).

G. Loria, Curve piani speciali algebriche e transcendent!

INTRODUCTION xvu

(Milan, 1930, 2 vols.) ; German edition (previously

published Leipzig, 1910-11, 2 vols.).

F. Cajori, A History ofMathematical Notations (Chicago,

1928-29, 2 vols.).

L. C. Karpinski, The History of Arithmetic (Chicago,

1925).

II. M. Walker, Studies in the History of Statistical

Methods (Baltimore, 1929).

R. Reiff, Geschichte der unendlichen Reihen (Tubingen,

1889).

I. Todhunter, History of the Progress of the Calculus of

Variations during the Nineteenth Century (Cam-
bridge, 1861).

I. Todhunter, History of the Mathematical Theory of

Probability from the Time of Pascal to that of Laplace

(Cambridge, 1865).

I. Todhunter, A History of the Mathematical Theories of

Attraction and the Figure of the Earth from the Time
of Newton to that of Laplace (London, 1873).

I- L. Coolidge, The Mathematics of Great Amateurs (Ox-
ford, 1949).

R. C. Archibald, Mathematical Table Makers (New York,
1948).

Other books will be mentioned at the end of the
different chapters.
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The history of mathematics is also discussed in the

books on the history of science in general. The standard

work is:

G. Sarton, Introduction to the History of Science

(Washington-Baltimore, 1927-48, 3 vols.).

This leads up to the Fourteenth Century
1 and can

be supplemented by the essay:

G. Sarton, The Study of the History of Science, with an

Introductory Bibliography (Cambridge, 1936).'

A good text for school use is:

W. T. Sedgwick—H. W. Tyler, A Short History of

Science (New York, 3rd ed., 1948).

Also useful are the ten articles by G. A. Miller called

A first lesson in the history of mathematics, A second

lesson, etc., in "National Mathematics Magazine" Vols.

13 (1939)-19 (1945).

Periodicals dealing with the history of mathematics

or of science in general are

:

"Bibliotheca mathematical ser. 1-3 (1884-1914)

"Scripta mathematica" (1932-present)

"Isis" (1913-present)

The author wishes to express his appreciation to

Dr. Neugebauer whose willingness to read the first

chapters of a concise history op mathematics has

resulted in several improvements.

'We have followed in this book Sarton's transcription of Greek

and Oriental names.

•See also G. Sarton's book mentioned on p. 286.

INTRODUCTION XIX

In this reprint we have corrected several misprints

and errors which had slipped into the first printing.

We would like to express to R. C. Archibald, E. J.

Dyksterhuis, S. A. Joffe, and other readers our appre-

ciation of their help in detecting these inaccuracies.



CHAPTER I

The Beginnings

1. Our first conceptions of number and form date

back to times as far removed as the Old Stone Age, the

Paleolithicum. Throughout the hundreds or more mil-

lennia of this period men lived in caves, under condi-

tions differing little from those of animals, and their

main energies were directed towards the elementary

process of collecting food wherever they could get it.

They made weapons for hunting and fishing, developed

a language to communicate with each other, and in the

later paleolithic ages enriched their lives with creative

art forms, statuettes and paintings. The paintings in

caves of France and Spain (perhaps c. 15000 years ago)
may have had some ritual significance; certainly they
reveal a remarkable understanding of form.

Little progress was made in understanding numerical
values and space relations until the transition occurred
from the mere gathering of food to its actual production,

from hunting and fishing to agriculture. With this

fundamental change, a revolution in which the passive
attitude of man toward nature turned into an active
one, we enter the New Stone Age, the Neolithicum.
This great event in the history of mankind occurred

perhaps ten thousand years ago, when the ice sheet
which covered Europe and Asia began to melt and made
room for forests and deserts. Nomadic wandering in
search of food came slowly to an end. Fishermen and
unters were in large part replaced by primitive farmers.
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Such farmers, remaining in one place as long as the soil

stayed fertile, began to build more permanent dwellings

;

villages emerged as protection against the climate and

against predatory enemies. Many such neolithic settle-

ments have been excavated. The remains show how

gradually elementary crafts such as pottery, carpentry,

and weaving developed. There were granaries, so that

the inhabitants were able to provide against winter

and hard times by establishing a surplus. Bread was

baked, beer was brewed, and in late neolithic times

copper and bronze were smelted and prepared. Inven-

tions were made, notably of the potter's wheel and the

wagon wheel; boats and shelters were improved. All

these remarkable innovations occurred only within local

areas and did not always spread to other localities. The

American Indian, for example, did not learn of the

existence of the wagon wheel until the coming of the

white man. Nevertheless, as compared with the paleo-

lithic times, the tempo of technical improvement was

enormously accelerated.

Between the villages a considerable trade existed,

which so expanded that connections can be traced

between places hundreds of miles apart. The discovery

of the arts of smelting and manufacturing, first copper

then bronze tools and weapons, strongly stimulated this

commercial activity. This again promoted the further

formation of languages. The words of these languages

expressed very concrete things and very few abstrac-

tions, but there was already some room for simple

numerical terms and for some form relations. Many
Australian, American, and African tribes were in this

stage at the period of their first contact with white
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men ; some tribes are still living in these conditions so

that it is possible to study their habits and forms of

expression.

2. Numerical terms—expressing some of "the most

abstract ideas which the human mind is capable of

forming," as Adam Smith has said—came only slowly

into use. Their first occurrence was qualitative rather

than quantitative, making a distinction only between

one (or better "a"—"a man"—rather than " one man")

and two and many. The ancient qualitative origin of

numerical conceptions can still be detected in the

special dual terms existing in certain languages such

as Greek or Celtic. When the number concept was ex-

tended higher numbers were first formed by addition:

3 by adding 2 and 1, 4 by adding 2 and 2, 5 by adding

2 and 3.

Here is an example from some Australian tribes:

Murray River: 1 = enea, 2 = pctcheval, 3 = petcheval-enea,

4 = petcheval petcheval.

Kamilaroi: 1 = mal, 2 = bulan, 3 = guliba, 4 - bulan bulan,

5 — bula guliba, 6 — guliba guliba1
.

The development of the crafts and of commerce stim-

ulated this crystallization of the number concept. Num-
bers were arranged and bundled into larger units,

usually by the use of the fingers of the hand or of both
hands, a natural procedure in trading. This led to

numeration first with five, later with ten as a base,

completed by addition and sometimes by subtraction,

'L. Conant, The Number Concept (London, 1896), pp. 106-
1«7. with many similar examples.
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so that twelve was conceived aslO + 2, or9asl0— 1.

Sometimes 20, the number of fingers and toes, was

selected as a base. Of 307 number systems of primitive

American peoples investigated by W. C. Eels, 146 were

decimal, 106 quinary and quinary decimal, vigesimal

and quinary vigesimal1
. The vigesimal system in its

most characteristic form occurred among the Mayas

of Mexico and the Celts in Europe.

Numerical records were kept by means of bundling,

strokes on a stick, knots on a string, pebbles or shells

arranged in heaps of fives—devices very much like

those of the old time inn-keeper with his tally stick.

From this method to the introduction of special sym-

bols for 5, 10, 20, etc. was only a step, and we find

exactly such symbols in use at the beginning of written

history, at the so-called dawn of civilization.

The oldest example of the use of a tally stick dates

back to paleolithic times and was found in 1937 in

Vestonice (Moravia). It is the radius of a young wolf,

7 in. long, engraved with 55 deeply encised notches, of

which the first 25 are arranged in groups of 5. They are

followed by a simple notch twice as long which termi-

nates the series; then, starting from the next notch,

also twice as long, a new series runs up to 30 .

It is therefore clear that the old saying found in Jacob

Grimm and often repeated, that counting started as

finger counting, is incorrect. Counting by fingers, that

is, counting by fives and tens, came only at a certain

stage of social development. Once it was reached, num-

>W. C. Eels., Number Systems of North American Indians, Am.

Math. Monthly 20 (1913), p. 293.

'Isis 28 (1938) pp. 462-463, from illustrated London News,

Oct. 2, 1937.
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bers could be expressed with reference to a base, with

the aid of which large numbers could be formed; thus

originated a primitive type of arithmetic. Fourteen was

expressed as 10 + 4, sometimes as 15 - 1. Multiplica-

tion began where 20 was expressed not as 10 + 10,

but as 2 X 10. Such dyadic operations were used for

millennia as a kind of middle road between addition

and multiplication, notably in Egypt and in the pre-

Aryan civilization of Mohenjo-Daro on the Indus.

Divisions began where 10 was expressed as "half of a

body", though conscious formation of fractions re-

mained extremely rare. Among North American tribes,

for instance, only a few instances of such formations

are known, and this is in almost all cases only of 1/2,

although sometimes also of 1/3 or 1/4.
1 A curious phe-

nomenon was the love of very large numbers, a love

perhaps stimulated by the all-too-human desire to exag-

gerate the extent of herds or of enemies slain; remnants

of this tendency appear in the Bible and in other sacred

writings.

3. It also became necessary to measure the length

and contents of objects. The standards were rough and

often taken from parts of the human body, and in this

way units originated like fingers, feet, or hands. Names
like ell, fathom, cubit also remind us of this custom.

When houses were built, as among the agricultural

Indians or the pole house dwellers of Central Europe,

'G. A. Miller has remarked that the words one-half, semis,

moitie have no direct connection with the words two, duo, deux

(contrary to one-third, one-fourth, etc.), which seems to show that

the conception of H originated independent of that of integer.

Nat. Math. Magazine 13 (1939) p. 272.
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rules were laid down for building along straight lines

and at right angles. The word "straight" is related to

"stretch," indicating operations with a rope
1

; the work

"line" to "linen," showing the connection between the

craft of weaving and the beginnings of geometry. This

was one way in which interest in mensuration evolved.

Neolithic man also developed a keen feeling for geo-

metrical patterns. The baking and coloring of pottery,

the plaiting of rushes, the weaving of baskets and tex-

tiles, and later the working of metals led to the cultiva-

tion of plane and spatial relationships. Dance patterns

must also have played a role. Neolithic ornamentation

rejoiced in the revelation of congruence, symmetry,

and similarity. Numerical relationships might enter

into these figures, as in certain prehistoric patterns

which represent triangular numbers; others display

"sacred" numbers.

Here follow some interesting geometrical patterns

occurring in pottery, weaving or basketry.

Fio. 1.'

This can be found on neolithic pottery in Bosnia and on objects

of art in the Mesopotamia!! Ur-period*.

GEOMETRICAL PATTERNS DEVEI.OPED BY AMERICAN INDIANS

(From Spier)

'Thename "rope-stretchers" (Greek: "harpedonaptai," Arabic:

"massah," Assyrian: "masihanu") was attached in many coun-

tries to men engaged in surveying—see S. Gandz, Quellen und
Slvdien zur Geschichte der Malhematih I (1930) pp. 255-277.

*W. Lietzmann, Geomelrie und Praehistorie, Isis 20(1933) pp.

436-439.
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Fia. 2.

This exists on Egyptian

pottery of the Predynastic

period (4000-3500 B.C.) 1
.

Fiq. 3.

These patterns were used by
pole house dwellers near Lju-

bljana (Yugoslavia) in the

Hallstatt-period (Central Eu-
rope, 1000-500 B.C.)'.

Fia. 4.

These rectangles filled with

triangles, triangles filled

with circles, are from urns

in graves near Sopron

in Hungary. They show
attempts at the formation

of triangular numbers,

which played an impor-

tant role in Pythagorean

mathematics of a later

period.*

'D. E. Smith, History of Mathematics (Ginn & Co., 1923) I

p 15.

»M. Hoernes, Urgeschichte der bildenden Kunst in Europa
(Vienna, 1915).

•See also F. Boas, General Anthropology (1930) p. 273.
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Patterns of this kind have remained popular through-

out historical times. Beautiful examples can be found on

dipylon vases of the Minoan and early Greek periods,

in the later Byzantine and Arabian mosaics, on Persian

and Chinese tapestry. Originally there may have been

a religious or magic meaning to the early patterns, but

their esthetic appeal gradually became dominant.

In the religion of the Stone Age we can discern a

primitive attempt to contend with the forces of nature.

Religious ceremonies were deeply permeated with magic,

and this magical element was incorporated into existing

conceptions of number and form as well as in sculpture,

music, and drawing. There were magical numbers, such

as 3, 4, 7 and magical figures such as the Pentalpha and

the Swastica. Some authors have even considered this

aspect of mathematics the determining factor in its

growth 1

, but though the social roots of mathematics

may have become obscured in modern times, they are

fairly obvious during the early section of man's history.

"Modern" numerology is a leftover from magical rites

dating back to neolithic, and perhaps even to paleo-

lithic, times.

4. Even among very primitive tribes we find some
reckoning of time and, consequently, some knowledge
of the motion of sun, moon, and stars. This knowledge
attained its first more scientific character when farming
and trade expanded. The use of a lunar calendar goes
very far back into the history of mankind, the changing
aspects of vegetation being connected with the changes

lW. J. McGee, Primitive Numbers, Nineteenth Annual Report,
Bureau Amer. Ethnology 1897-98 (1900) pp. 825-851.
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PREDYNABTIC EGYPTIAN POTTERY
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of the moon. Primitive people also pay attention to the

solstices or rising of the Pleiades at dawn. The earliest

civilized people attributed a knowledge of astronomy to

their most remote, prehistoric periods. Other primitive

peoples used the constellations as guides in navigation.

From this astronomy resulted some knowledge of the

properties of the sphere, of angular directions, and of

circles.

5. These few illustrations of the beginnings of mathe-

matics show that the historical growth of a science does

not necessarily pass through the stages in which we now

develop it in our instruction. Some of the oldest geo-

metrical forms known to mankind, such as knots and

patterns, only received full scientific attention in recent

years. On the other hand some of our more elementary

branches of mathematics, such as the graphical rep-

resentation or elementary statistics, date back to com-

paratively modern times. As A. Speiscr has remarked

with some asperity: "Already the pronounced tendency

toward tediousness, which seems to be inherent in

elementary mathematics, might plead for its late origin,

since the creative mathematician would prefer to pay

his attention to the interesting and beautiful prob-

lems.'"

Literature.

Apart from the texts by Conant, Eels, Smith, Lietz-

mann, McGee, and Speiser already quoted, see:

lA. Speiser, Theorie der Gruppen von endlicher Ordnung (Leip-
zig 1925, reprint New York 1945) p. 3.
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R. Mcnninger, Zahlwort und Ziffer (Breslau, 1934).

D. E. Smith-J. Ginsburg, Numbers and Numerals

(N. Y. Teachers' College, 1937).

Gordon Childe, What Happened in History (Pelican

Book, 1942).

Interesting patterns are described in:

L. Spier, Plains Indian Parfleche Designs, Un. of

Washington Publ. in Anthropology 4 (1931),

pp. 293-322.

A. B. Deacon, Geometrical drawings from Malekula and

other Islands of the New Hebrides, Journ. Roy.

Anthrop. Institute 64 (1934) pp. 129-175.

M. Popova, La geomitrie dans la broderie bulgare,

Comptes Rendus, Premier Congres des Mathe-

maticiens des pays slaves (Warsaw, 1929) pp. 367-

369.

On the mathematics of the American Indians see

also:

J. E. S. Thompson, Maya Arithmetic, Contributions to

Am. Anthropology and History 36, Carnegie Inst.,

of Washington Publ. 528 (1941) pp. 37-62.

An extensive bibliography in D. E. Smith, History of

Mathematics I (1923) p. 14.

For a bibliography on the development of mathe-

matical concepts in children:

A. Riess, Number Readiness in Research (Chicago, 1947).

CHAPTER II

The Ancient Orient

1. During the fifth, fourth and third millennium B.C.

newer and more advanced forms of society evolved from

well established neolithic communities along the banks

of great rivers in Africa and Asia, in sub-tropic or

nearly sub-tropic regions. These rivers were the Nile,

the Tigris and Euphrates, the Indus and later the

Ganges, the Hoang-ho and later the Yang-tse.

The lands along these rivers could be made to grow
abundant crops once the flood waters were brought

under control and the swamps drained. By contrast to

the arid desert and mountain regions and plains sur-

rounding these countries the river valleys could be
made into a paradise. Within the course of the centuries

these problems were solved by the building of levees

and dams, the digging of canals, and the construction of

reservoirs. Regulation of the water supply required

coordination of activities between widely separated
localities on a scale greatly surpassing all previous
efforts. This led to the establishment of central organs
of administration, located in urban centers rather than
•n the barbarian villages of former periods. The rela-

tively large surplus yielded by the vastly improved and
intensive agriculture raised the standard of living for
the population as a whole, but it also created an urban
aristocracy headed by powerful chieftains. There were
many specialized crafts carried on by artisans, soldiers,
clerks, and priests. Administration of the public works

3
13
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was placed in the hands of a permanent officialdom, a

group wise in the behavior of the seasons, the motions

of the heavenly bodies, the art of land division, the

storage of food, and the raising of taxes. A script was

used to codify the requirements of the administration

and the actions of the chieftains. Bureaucrats as well as

artisans acquired a considerable amount of technical

knowledge, including metallurgy and medicine. To this

knowledge belonged also the arts of computation and

mensuration.

By now social classes were firmly established. There

were chieftains, free and tenant farmers, craftsmen,

scribes, and officials, serfs and slaves. Local chiefs so

increased in wealth and power that they rose from

feudal lords of limited authority to become local kings

of absolute sovereignty. Quarrels and wars among the

various despots led to larger domains, united under a

single monarch. These forms of society based on irri-

gation and intensive agriculture led in this way to an

"Oriental" form of despotism. Such despotism could

be maintained for centuries and then collapse, some-

times under the impact of mountain and desert tribes

attracted by the wealth of the valleys, or again through

neglect of the vast, complicated, and vital irrigation

system. Under such circumstances power might shift

from one tribal king to another, or society might break

up into smaller feudal units, and the process of unifica-

tion would start all over again. However, under all

these dynastic revolutions and recurrent transitions

from feudalism to absolutism the villages, which were

the basis of this society, remained essentially un-

changed, and with it the fundamental economic and
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social structure. Oriental society moves in cycles, and

there exist even at present many communities in Asia

and Africa which have persisted for several millennia

in the same pattern of life. Progress under such con-

ditions was slow and erratic, and periods of cultural

growth might be separated by many centuries of stag-

nation and decay.

The static character of the Orient imparted a funda-

mental sanctity to its institutions which facilitated the

identification of religion with the state apparatus. The

bureaucracy often shared this religious character of the

state; in many oriental countries priests were the ad-

ministrators of the domain. Since the cultivation of

science was the task of the bureaucracy, we find in

many—but not all—oriental countries that the priests

were the outstanding carriers of scientific knowledge.

2. Oriental mathematics originated as a practical

science to facilitate computation of the calendar, ad-

ministration of the harvest, organization of public

works, and collection of taxes. The initial emphasis

was naturally on practical arithmetic and mensuration.

However, a science cultivated for centuries by a special

craft, whose task it is not only to apply it but also to

instruct its secrets, develops tendencies toward abstrac-

tion. Gradually it will come to be studied for its own
sake. Arithmetic evolved into algebra not only because
it allowed better practical computations, but also as

the natural outgrowth of a science cultivated and de-

veloped in schools of scribes. For the same reasons

mensuration developed into the beginnings—but no
more—of a theoretical geometry.
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Despite all the trade and commerce in which these

ancient societies indulged, their economic core was agri-

cultural, centered in the villages, characterized by isola-

tion and traditionalism. The result was that despite

similarity in economic structure and in the essentials of

scientific lore, there always remained striking differences

between the different cultures. The seclusion of the

Chinese and of the Egyptians was proverbial. It always

has been easy to differentiate between the arts and

the script of the Egyptians, the Mesopotamians, the

Chinese, and the Indians. We can in the same way speak

of Egyptian, Mesopotamian, Chinese, and Indian math-

ematics, though their general arithmetic-algebraic na-

ture was very much alike. Even if the science of one

country progressed beyond that of another during some

period, it preserved its characteristic approach and

symbolism.

It is difficult to date new discoveries in the East.

The static character of its social structure tends to

preserve scientific lore throughout centuries or even

millennia. Discoveries made within the seclusion of a

township may never spread to other localities. Storages

of scientific and technical knowledge can be destroyed

by dynastic changes, wars, or floods. The story goes

that in 221 B.C. when China was united under one

absolute despot, Shih Huang Ti (the Great Yellow

Emperor), he ordered all books of learning to be de-

stroyed. Later much was rewritten by memory, but

such events make the dating of discoveries very dif-

ficult.

Another difficulty in dating Oriental science is due
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to the material used for its preservation. The Meso-

potamian people baked clay tablets which are virtually

indestructible. The Egyptians used papyrus and a size-

able body of their writing has been preserved in the

dry climate. The Chinese and Indians used far more

perishable material, such as bark or bamboo. The

Chinese, in the Second Century A.D., began to use

paper, but little has been preserved which dates back

to the millennia before 700 A.D. Our knowledge of

Oriental mathematics is therefore very sketchy; for the

pre-Hellenistic centuries we are almost exclusively con-

fined to Mesopotamian and Egyptian material. It is

entirely possible that new discoveries will lead to a

complete re-evaluation of the relative merits of the

different Oriental forms of mathematics. For a long

time our richest historical field lay in Egypt because of

the discovery in 1858 of the so-called Papyrus Rhind,

written about 1650 B.C., but which contained much

older material. In the last twenty years our knowledge

of Babylonian mathematics has been vastly augmented

by the remarkable discoveries of 0. Neugebauer and

F. Thureau-Dangin, who decyphered a large number of

clay tablets. It has now appeared that Babylonian

mathematics was far more developed than its Oriental

counterparts. This judgement may be final, since there

exists a certain consistency in the factual character of

the Babylonian and Egyptian texts throughout the cen-

turies. Moreover, the economic development of Meso-

potamia was more advanced than that of other coun-

tries in the so-called Fertile Crescent of the Near East,

which stretched from Mesopotamia to Egypt. Meso-
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potamia was the crossroads for a large number of

caravan routes, while Egypt stood in comparative iso-

lation. Added to this was the fact that the harnessing

of the erratic Tigris and Euphrates required more engin-

eering skill and administration than that of the Nile,

that "most gentlemanly of all rivers," to quote Sir

William Willcocks. Further study of ancient Hindu
mathematics may still reveal unexpected excellence,

though so far claims for it have not been very con-

vincing.

3. Most of our knowledge of Egyptian mathematics

is derived from two mathematical papyri: one the

Papyrus Rhind, already mentioned and containing 85

problems; the other the so-called Moscow Papyrus,

perhaps two centuries older, containing 25 problems.

These problems were already ancient lore when the

manuscripts were compiled, but there are minor papyri

of much more recent date—even from Roman times

—

which show no difference in approach. The mathematics

they profess is based on a decimal system of numeration

with special signs for each higher decimal unit—a sys-

tem with which we are familiar through the Roman sys-

tem which follows the same principle :MDCCCLXXVTII
= 1878. On the basis of this system the Egyptians

developed an arithmetic of a predominantly additive

character, which means that its main tendency was to

reduce all multiplication to repeated additions. Multi-

plication by 13, for instance, was obtained by multiply-

ing first by 2, then by 4, then by 8, and adding the

results of multiplication by 4 and 8 to the original

number.
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E.g. for the computation of 13 X 11:

•1

2
•4

•8

11

22

44

88

Add the numbers indicated by *, which gives 143.

Many problems were very simple and did not go beyond

a linear equation with one unknown:

A quantity, its 2/3, its 1/2, and its 3/7, added together

becomes 33. What is the quantity?

The most remarkable aspect of Egyptian arithme-

tic was its calculus of fractions. All fractions were re-

duced to sums of so-called unit fractions, meaning frac-

tions with one as numerator. The only exception was

2 1 .

- = 1 — - for which there was a special symbol in

existence. The reduction to sums of unit fractions was

made possible by tables, which gave the decomposition

for fractions of the form 2/n—the only decomposition

necessary because of the dyadic multiplication. The
Papyrus Rhind has a table giving the equivalents in

unit fractions for all odd n from 5 to 331, e.g.

7 4
T

28

97 56 T 679
T 776

Such a calculus with fractions gave to Egyptian

mathematics an elaborate and ponderous character, and
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effectively impeded the further growth of science. This

decomposition presupposed at the same time some

mathematical skill, and there exist interesting theories

to explain the way in which the Egyptian specialists

might have obtained their results.'

The problems deal with the strength of bread and of

different kinds of beer, with the feeding of animals and

the storage of grain, showing the practical origin of

this cumbersome arithmetic and primitive algebra.

Some problems show a theoretical interest, as in the

problem of dividing 100 loaves among 5 men in such

a way that the share received shall be in arithmetical

progression, and that one seventh of the sum of the

largest three shares shall be equal to the sum of the

smallest two. We even find a geometrical progression

dealing with 7 houses in each of which there are 7 cats,

each cat watching 7 mice, etc., which reveals a knowledge

of the formula of the sum of a geometrical progression.

Some problems were of a geometrical nature, dealing

mostly with mensuration. The area of the triangle was

found as half the product of base and altitude; the

area of a circle with diameter d was given as ( d —
„) ,

which led to a value of v of 256/81 = 3.1605. We also

meet some formulas for solid volumes, such as the cube,

the parallelepiped and the circular cylinder, all con-

ceived concretely as containers, mainly of grain. The
most remarkable result of Egyptian mensuration was

O. Neugebauer, Arithmetik und Rechentechnik der Agypter,

Quellea und Studien zur Geschichte der Mathematik BI (1931)

pp. 301-380. B. L. van der Waerden, Die Entatehungsgeachichte

der Ogyptiechen Bruchreehnung, vol. 4 (1938) pp. 359-382.
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the formula for the value of the frustrun of a square

pyramid V = (h/3) (a' + ah + b*), where a and b are

the lengths of the sides of the squares and h is the height.

This result, of which no counterpart has so far been

found in other ancient forms of mathematics, is the

more remarkable since there is no indication that the

Egyptians had any notion even of the Pythagorean

theorem, despite some unfounded stories about "harpe-

donaptai", who supposedly constructed right triangles

with the aid of a string with 3 + 4 + 5 = 12 knots'.

We must here warn against exaggerations concern-

ing the antiquity of Egyptian mathematical knowledge.

All kinds of advanced science have been credited to the

pyramid builders of 3000 B.C. and before, and there is

even a widely accepted story that the Egyptians of

4212 B.C. adopted the so-called Sothic cycle for the

measurement of the calendar. Such precise mathemat-

ical and astronomical work cannot be seriously ascribed

to a people slowly emerging from neolithic conditions,

and the source of these tales can usually be traced to a

late Egyptian tradition transmitted to.us by the Greeks.

It is a common characteristic of ancient civilizations to

date fundamental knowledge back to very early times.

All available texts point to an Egyptian mathematics of

rather primitive standards. Their astronomy was on the

same general level.

4. With Mesopotamian mathematics we rise to a far

higher level than Egyptian mathematics ever obtained.

We can here even detect progress in the course of the

See S. Gands, loc. cit. p. 7.
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centuries. Already the oldest texts, dating from the

latest Sumerian period (the Third Dynasty of Ur, c.

2100 B.C.)i show keen computational ability. These

texts contain multiplication tables in which a well de-

veloped sexagesimal system of numeration was super-

imposed on an original decimal system ; there are cunei-

form symbols indicating 1, 60, 3600, and also 60"', 60~ 2
.

However, this was not their most characteristic feature.

Where the Egyptians indicated each higher unit by a

new symbol, these Sumerians used the same symbol but

indicated its value by its position. Thus 1 followed by

another 1 meant 61, and 5 followed by 6 followed by 3

(we shall write 5,6,3) meant 5 X 60
3 + 6 X 60 + 3 =

18363. This position, or place value, system did not

differ essentially from our own system of writing num-
bers, in which the symbol 343 stands for 3 X 10

s +
4 X 10 + 3. Such a system had enormous advantages

for computation, as we can readily see when we try to

perform a multiplication in our own system and in a

system with Roman numerals. The position system also

removed many of the difficulties of fractional arith-

metic, just as our own decimal system of writing frac-

tions does. This whole system seems to have been a

direct result of the technique of administration, as is

witnessed by thousands of texts dating from the same
period and dealing with the delivery of cattle, grain,

etc., and with arithmetical work based on these trans-

actions.

In this type of reckoning existed some ambiguities

since the exact meaning of each symbol was not always

clear from its position. Thus (5,6,3) might also mean
5 X 60' + 6 X 60° + 3 X 60"' = 306 1/20, and the
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exact interpretation had to be gathered from the con-

text. Another uncertainty was introduced through the

fact that a blank space sometimes meant zero, so that

(11,5) might stand for 11 X 60
3 + 5 = 39605. Even-

tually a special symbol for zero appeared, but not before

the Persian era. The so-called "invention of the zero"

was, therefore, a logical result of the introduction of

the position system, but only after the technique of

computation had reached a considerable perfection.

Both the sexagesimal system and the place value

system remained the permanent possession of mankind.

Our present division of the hour into 60 minutes and

3600 seconds dates back to these Sumerians, as well as

our division of the circle into 360 degrees, each degree

into 60 minutes and each minute into 60 seconds. There

is reason to believe that this choice of 60 rather than

10 as a unit occurred in an attempt to unify systems

of measure, though the fact that 60 has many divisors

may also have played a role. As to the place value

system, the permanent importance of which has been

compared to that of the alphabet
1—both inventions

replacing a complex symbolism by a method easily

understood by a large number of people—, its history

is still wrapt in considerable obscurity. It is reasonable

to suppose that both Hindus and Greeks made its

acquaintance on the caravan routes through Babylon;

we also know that the Arabs described it as an Indian

invention. The Babylonian tradition, however, may
have influenced all later acceptance of the position

system.

'O. Neugebauer, The History of Ancient Astronomy, Journal

of Near Eastern Studies 4 (1945) p. 12.
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5. The next group of cuneiform texts dates back to

the first Babylonian Dynasty, when King Hammurabi

reigned in Babylon (1950 B.C.), and a Semitic popula-

tion had subdued the original Sumerians. In these

texts we find arithmetic evolved into a well established

algebra. Although the Egyptians of this period were

only able to solve simple linear equations, the Baby-

lonians of Hammurabi's days were in full possession of

the technique of handling quadratic equations. They

solved linear and quadratic equations in two variables,

and even problems involving cubic and biquadratic

equations. They formulated such problems only with

specific numerical values for the coefficients, but their

method leaves no doubt that they knew the general

rule.

Here is an example taken from a tablet dating from'

this period:

"An area A, consisting of the sum of two squares is 1000. The

side of one square is 2/3 of the side of the other square, diminished

by 10. What are the sides of the square?"

This leads to the equations*1 + j? - 1000, y = 2/3 x - 10

of which the solution can be found by solving the quadratic

equation

9 3

which has one positive solution x = 30.

The actual solution in the cuneiform text confines itself—as in

all Oriental problems—to the simple enumeration of the numerical

steps that must be taken to solve the quadratic equation:

"Square 10: this gives 100; subtract 100 from 1000; this gives

900," etc.

ONE SIDE OF A CUNEIFOKM TEXT NOW IN THE BRITISH MUSEUM

(From Neugebauer, Math. Keilschr. Texte, 3, II, plate 3)
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The strong arithmetical-algebraic character of this

Babylonian mathematics is also apparent from its ge-

ometry. As in Egypt, geometry developed from a foun-

dation of practical problems dealing with mensuration,

but the geometrical form of the problem was usually

only a way of presenting an algebraic question. The
previous example shows how a problem concerning the

area of a square led to a non-trivial algebraic problem,

and this example is no exception. The texts show that

the Babylonian geometry of the Semitic period was in

possession of formulas for the areas of simple rectilinear

figures and for the volumes of simple solids, though the

volume of a truncated pyramid has not yet been found.

The so-called theorem of Pythagoras was known, not

only for special cases, but in full generality. The main
characteristic of this geometry was, however, its alge-

braic character. This is equally true of all later texts,

especially those dating back to the third period of which

we have a generous number of texts, that of the New
Babylonian, Persian, and Seleucid eras (from c. 600

B.C.—300 A.D.).

The texts of this later period are strongly influenced

by the development of Babylonian astronomy, which in

those days assumed really scientific traits, character-

ized by a careful analysis of the different ephemerides.

Mathematics became even more perfect in its compu-

tational technique; its algebra tackled problems in equa-

tions which even now require considerable numerical

skill. There exist computations dating from the Seleucid

period which go to seventeen sexagesimal places. Such

complicated numerical work. was no longer related to

problems of taxation or mensuration, but was stimu-
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lated by astronomical problems or by pure love of

computation.

Much of this computational arithmetic was done with

tables, which ranged from simple multiplication tables

to lists of reciprocals and of square and cubic roots. One

table gives a list of numbers of the form ns
-f- n

2
, which

was used, it seems, to solve cubic equations such as x
a +

x
1 = a. There were some excellent approximations, y/2

was indicated by 1^ (-s/2 = 1.4142, 1-^ = 1.4167)',

and l/\/2 = .7071 by 17/24 = .7083. Square roots

seem to have been found by formulas like these:

VI = V^Th = a + h/2a =
\
(a + £).

It is a curious fact that in Babylonian mathematics no

better approximation for r has so far been found than

the Biblical jt = 3, the area of a circle being taken as—
12

of the square of its circumference.

The equation x* + x* = a appears in a problem which Calls

for the solution of simultaneous equations xyz -\r xy = 1+1/6,
y - 2/3 x, z = 12i which leads to (12*)' + (12*)' = 252, or

12s = 6 (from the table).

There also exist cuneiform texts with problems in

compound interest, such as the question of how long

it would take for a certain sum of money to double itself

'O. Neugobauer, Exact Sciences in Antiquity, Un. of Pennsyl-

vania Bicentennial Conference, Studies in Civilization, Phila-

delphia 1941, pp. 13-29 (Copenhagen. 1951).
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at 20 percent interest. This leads to the equation

1 1-1 = 2, which is solved by first remarking that

3 < x < 4 and then by linear interpolation; in our

way of writing

4 - x =
(1.2)* - 2

(1.2)
4 - (1.2)

3 '

leading to a; = 4 years minus (2,33,20) months.

One of the specific reasons for the development of

algebra around 2000 B.C. seems to have been the use of

the old Sumerian script by the new Semitic rulers, the

Babylonians . The ancient script was, like the hiero-

glyphics, a collection of ideograms, each sign denoting a

single concept. The Semites used them for the phonetic

rendition of their own language and also took over some

signs in their old meaning. These signs now expressed

concepts, but were pronounced in a different way. Such

ideograms were well fitted for an algebraic language, as

are our present signs +, — , :, etc., which are really

also ideograms. In the schools for administrators in

Babylon this algebraic language became a part of the

curriculum for many generations, and though the em-

pire passed through the hands of many rulers—Kassites,

Assyrians, Medes, Persians—the tradition remained.

The more intricate problems date back to later

periods in the history of ancient civilization, notably to

the Persian and Seleucid times. Babylon, in those days,

was no longer a political center, but remained for many
centuries the cultural heart of a large empire, where

Babylonians mixed with Persians, Greeks, Jews, Hin-
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dus, and many other peoples. There is in all the cunei-

form texts a continuity of tradition which seems to

point to a continuous local development. There is little

doubt that this local development was also stimulated

by the contact with other civilizations and that this

stimulation acted both ways. We know that Babylonian

astronomy of this period influenced Greek astronomy

and that Babylonian mathematics influenced compu-

tational arithmetic; it is reasonable to assume that

through the medium of the Babylonian schools of

scribes, Greek science and Hindu science met. The role

of Persian and Seleucid Mesopotamia in the spread of

ancient and antique astronomy and mathematics is

still poorly known, but all available evidence shows

that it must have been considerable. Medieval Arabic

and Hindu science did not only base itself on the tradi-

tion of Alexandria but also on that of Babylon.

6. Nowhere in all ancient Oriental mathematics do

we find any attempt at what we call a demonstration.

No argumentation was presented, but only the prescrip-

tion of certain rules: "Do such, do so". We are ignorant

of the way in which the theorems were found: how, for

instance, did the Babylonians become acquainted with

the theorem of Pythagoras? Several attempts exist to

explain the way in which Egyptians and Babylonians

obtained their results, but they are all of an hypothetical

nature. To us who have been educated on Euclid's

strict argumentation, this whole Oriental way of reason-

ing seems at first strange and highly unsatisfactory. But
this strangeness wears off when we realize that most of
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the mathematics we teach our present day engineers and

technicians is still of the "Do such, do so" type, with-

out much attempt at rigorous demonstration. Algebra

is still being taught in many high schools as a set of

rules rather than a science of deduction. Oriental math-

ematics never seems to have been emancipated from the

millennial influence of the problems in technology and
administration, for the use of which it had been in-

vented.

7. The question of Greek and Babylonian influence

determines profoundly the study of ancient Hindu and

Chinese mathematics. The native Indian and Chinese

scholars of later days used—and sometimes still use

—

to stress the great antiquity of their mathematics, but

there are no mathematical texts in existence which can

be definitely dated to the pre-Christian era. The oldest

Hindu texts are perhaps from the first centuries A.D.,

the oldest Chinese texts date back to an even later

period. We do know that the ancient Hindus used

decimal systems of numeration without a place value

notation. Such a system was formed by the so-called

Brahml numerals, which had special signs for each of

the numbers 1, 2, 3, , 9, 10; 20, 30, 40, ,

100; 200, 300, , 1000; 2000, •• •
; these symbols

go back at least to the time of King Acoka (300 B.C.).

Then there exist the so-called " Sulvasutras," of which

parts date back to 500 B.C. or earlier, and which con-

tain mathematical rules which may be of ancient native

origin. These rules are found among ritualistic pre-

scriptions, of which some deal with the construction of

altars. We find here recipes for the construction of
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squares and rectangles and expressions for the relation

of the diagonal to the sides of the square and for the

equivalence of circles and squares. There is some knowl-

edge of the Pythagorean theorem in specific cases, and

there are a few curious approximations in terms of unit

fractions, such as (in our notation)

:

^=l+| + 3l-3X3i(
=1 -4142156)

J. i.i i
,

i v
T ~ \ 8

"*"
8.29 8.29.6

T
8.29.6.8/

= 18(3 - 2\/2)

The curious fact that these results of the "Sul-

vasutras" do not occur in later Hindu works shows that

we cannot yet speak of that continuity of tradition in

Hindu mathematics which is so typical of its Egyptian

and of Babylonian counterparts, and this continuity

may actually be absent, India being as large as it is.

There may have been different traditions relating to

various schools. We know, for instance, that Jainism,

which is as ancient as Buddhism (c. 500 B.C.) en-

couraged mathematical studies; in Jaina sacred books

the value x •= \/l0 is found
1

.

8. The study of ancient Chinese mathematics is con-

siderably handicapped by the lack of satisfactory trans-

lations, so that we are forced to use second-hand sources,

'B. Datta, The Jaina School of Mathematics, Bulletin Calcutta

Math. Soc. 21 (1929) pp. 115-146.
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mainly the reports of Mikami, Biot and Biernatzki
1

,

which are all very sketchy. They give us some informa-

tion about the so-called Ten Classics (the"suan-ching"),

a collection of mathematical and astronomical texts

used for the state examination of officials in the main
mathematics section during the T'ang dynasty (618-

907 A.D.) The material contained in these texts is much
older; the first of them, the "Chou pi," is supposed to

date back to the Chou period (1112-256 B.C.), and part

of its content may have been of ancient date even at

that period. One book outside of the Ten Classics, the
" I-ching," is perhaps even more ancient than the " Chou
pi"; it contains some mathematics among much di-

vination and magic. Its best known mathematical con-

tribution is the magic square

4 9 2

3 5 7

8 1 6.

The number system of ancient China, as it appears

from the Ten Classics, was decimal with special sym-
bols for the higher units, like the Egyptian system. It

seems that in order to express higher units the tokens

for the lower units were repeated, so that a position

system arose. .We find, for instance, in the "Sun TzG,"
one of the Ten Classics dating back to the first century

A.D., a description of the use of calculating pieces for

the performance of multiplication and division. These
pieces were made of bamboos or wood and were arranged

lK. L. Biernatzki, Die ArUhmelik der Chinesen, Crelle 52 (1866)

pp. 59-94.
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so that, for instance, |, ||, T» TTi —»
=

> 1 meant 1, 2,

6, 7, 10, 20, 60, respectively. This led to a position

system with 20 tokens, in which 1 TJ "
1 1 II meant

6729. Here the ingenious idea of a position system may
have resulted from the difficulty of finding an unlimited

number of single horizontal and vertical positions of

the sticks.

In the computation of the calendar a kind of sex-

agesimal decimal system was used in which 60 was a

higher unit called "cycle" (the "cycle in Cathay" of

Tennyson's poem). There are no indications, however,

that ancient Chinese arithmetic ever used its number

systems for the purpose of elaborate computations like

Babylonian mathematics. The mathematics of the Ten

Classics is of a simple kind and does not seem to go

beyond the limits of Egyptian mathematics. There is

some trigonometry, notably in the "Hai-Tao" or "Sea

Island" Classic, but since this is ascribed to the third

century A.D., we may not exclude Western influence.

Chinese mathematics is in the exceptional position

that its tradition has remained practically unbroken

until recent years, so that we can study its position in

the community somewhat better than in the case of

Egyptian and Babylonian mathematics which belonged

to vanished civilizations. We know, for instance, that

candidates for examination had to display a precisely

circumscribed knowledge of the Ten Classics and that

this examination was based mainly on the ability to

cite texts correctly from memory. The traditional lore

was thus transmitted from generation to generation

with painful conscientiousness. In such a stagnant cul-

tural atmosphere new discoveries became extraordinary
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exceptions, and this again guaranteed the invariability

of the mathematical tradition. Such a tradition might
be transmitted over millennia, only occasionally shaken

by great historical catastrophes. In India a similar con-

dition existed; here we even have examples of mathe-
matical texts written in metric stanzas to facilitate

memorization. There is no particular reason to believe

that the ancient Egyptian and Babylonian practice

may have been much different from the Indian and
Chinese one. The emergence of an entirely new civiliza-

tion was necessary to interrupt the complete ossification

of mathematics. The different outlook on life charac-

teristic of Greek civilization at last brought mathe-

matics up to the standards of a real science.
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CHAPTER III

Greece

1. Enormous economic and political changes occurred

in and around the Mediterranean basin during the last

centuries of the second millennium. In a turbulent at-

mosphere of migrations and wars the Bronze Age was

replaced by what has been called our Age, the Age

of Iron. Few details are known about this period of

revolutions, but we find that towards its end, perhaps

circa 900 B.C., the Minoan and Hittite empires had

disappeared, the power of Egypt and Babylonia had

been greatly reduced, and new peoples had come into

historical setting. The most outstanding of these new

peoples were the Hebrews, the Assyrians, the Phoenic-

ians, and the Greeks. The replacement of bronze by

iron brought not only a change in warfare but by cheap-

ening the tools of production increased the social sur-

plus, stimulated trade, and allowed larger participation

of the common people in matters of economy and

public interest. This was reflected in two great innova-

tions, the replacement of the clumsy script of the

Ancient Orient by the easy-to-learn alphabet and the

introduction of coined money, which helped to stimu-

late trade. The time had come when culture could no

longer be the exclusive province of an Oriental official-

dom.

The activities of the "sea-raiders", as some of the

migrating peoples are styled in Egyptian texts, were

originally accompanied by great cultural losses. The

39



40 A CONCISE HISTORY OF MATHEMATICS

Minoan civilization disappeared ; Egyptian art declined;

Babylonian and Egyptian science stagnated for cen-

turies. No mathematical texts have come to us from

this transition period. When stable relations were again

established the Ancient Orient recovered mainly along

traditional lines, but the stage was set for an entirely

new type of civilization, the civilization of Greece.

The towns which arose along the coast of Asia Minor

and on the Greek mainland were no longer administra-

tion centers of an irrigation society. They were trading

towns in which the old-time feudal landlords had to

fight a losing battle with an independent, politically

conscious merchant class. During the Seventh and Sixth

Centuries B.C. this merchant class won ascendancy and

had to fight its own battles with the small traders and

artisans, the demos. The result was the rise of the Greek

polis, the self governing city state, a new social experi-

ment entirely different from the early city states of

Sumer and other Oriental countries. The most im-

portant of these city states developed in Ionia on the

Anatolian coast. Their growing trade connected them

with the shores of the whole Mediterranean, with Meso-

potamia, Egypt, Scythia and even with countries be-

yond. Milete for a long time took a leading place.

Cities on other shores also gained in wealth and im-

portance : on the mainland of Greece first Corinth, later

Athens; on the Italian coast Croton and Tarentum;

in Sicily, Syracuse.

This new social order created a new type of man. The
merchant trader had never enjoyed so much independ-

ence, but he knew that this independence was a result

of a constant and bitter struggle. The static outlook of

GREECE 41

the Orient could never be his. He lived in a period of

geographical discoveries comparable only to those of

Sixteenth Century Western Europe; he recognized no

absolute monarch or power supposedly vested in a

static Deity. Moreover, he could enjoy a certain amount

of leisure, the result of wealth and of slave labor. He

could philosophize about this world of his. The absence

of any well established religion led many inhabitants of

these coastal towns into mysticism, but also stimulated

its opposite, the growth of rationalism and the scientific

outlook.

2. Modern mathematics was born in this atmosphere

of Ionian rationalism—the mathematics which not only

asked the Oriental question "how?" but also the mod-

ern, the scientific question, "why?" The traditional

father of Greek mathematics is the merchant Thales of

Milete who visited Babylon and Egypt in the first

half of the Sixth Century. And even if his whole figure

is legendary, it stands for something eminently real. It

symbolizes the circumstances under which the founda-

tions not only of modern mathematics but also of

modern science and philosophy were established.

The early Greek study of mathematics had one main

goal, the understanding of man's place in the universe

according to a rational scheme. Mathematics helped to

find order in chaos, to arrange ideas in logical chains,

to find fundamental principles. It was the most rational

of all sciences, and though there is little doubt that the

Greek merchants became acquainted with Oriental

mathematics along their trade routes, they soon found

out that the Orientals had left most of the rational-



42 A CONCISE HISTORY OF MATHEMATICS

ization undone. Why had the isosceles triangle two

equal angles? Why was the area of a triangle equal to

half that of a rectangle of equal base and altitude? These

questions came naturally to men who asked similar

questions concerning cosmology, biology, and physics.

It is unfortunate that there are no primary sources

which can give us a picture of the early development

of Greek mathematics. The existing codices are from

Christian and Arabic times, and they are only sparingly

supplemented by Egyptian papyrus notes of a some-

what earlier date. Classical scholarship, however, has

enabled us to restore the remaining texts, which date

back to the Fourth Century B.C. and later, and we
possess in this way reliable editions of Euclid, Archi-

medes, Apollonios, and other great mathematicians of

antiquity. But these texts represent an already fully

developed mathematical science, in which historical de-

velopment is hard to trace even with the aid of later

commentaries. For the formative years of Greek mathe-

matics we must rely entirely on small fragments trans-

mitted by later authors and on scattered remarks by
philosophers and other not strictly mathematical au-

thors. Highly ingenious and patient text criticism has

been able to elucidate many obscure points in this early

history, and it is due to this work, carried on by in-

vestigators such as Paul Tannery, T. L. Heath, H. G.

Zeuthen, E. Frank and others, that we are able to

present something like a consistent, if largely hypo-

thetical, picture of Greek mathematics in its formative

years.

3. In the Sixth Century B.C. a new and vast Oriental
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power arose on the ruins of the Assyrian Empire: the

Persia of the Achaemenides. It conquered the Anatolian

towns, but the social structure on the mainland of

Greece was already too well established to suffer defeat.

The Persian invasion was repelled in the historic battles

of Marathon, Salamis, and Plataea. The main result of

the Greek victory was the expansion and hegemony of

Athens. Here, under Perikles in the second half of the

Fifth Century, the democratic elements became in-

creasingly influential. They were the driving force be-

hind the economic and military expansion and made

Athens by 430 not only the leader of a Greek Empire

but also the center of a new and amazing civilization

—

the Golden Age of Greece.

Within the framework of the social and political

struggles philosophers and teachers presented their the-

ories and with them the new mathematics. For the first

time in history a group of critical men, the "sophists,"

less hampered by tradition than any previous group of

learned persons, approached problems of a mathematical

nature in the spirit of understanding rather than of

utility. As this mental attitude enabled the sophists to

reach toward the foundations of exact thinking itself,

it would be highly instructive to follow their discussions.

Unfortunately, only one complete mathemathical frag-

ment of this period is extant; it is written by the Ionian

philosopher Hippokrates of Chios. This fragment repre-

sents a high degree of perfection in mathematical reason-

ing and deals, typically enough, with a curiously "im-

practical" but theoretically valuable subject, the so-

called "lunulae"—the little moons or crescents bounded

by two circular arcs.
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The subject—to find certain areas bounded by two

circular arcs which can be expressed rationally in terms

of the diameters—has a direct bearing on the problem

of the quadrature of the circle, a central problem in

Greek mathematics. In the analysis of his problem1

Hippokrates showed that the mathematicians of the

Golden Age of Greece had an ordered system of plane

geometry, in which the principle of logical deduction

from one statement to another ("apagoge") had been

fully accepted. A beginning of axiomatics had been

made, as is indicated by the name of the book sup-

posedly written by Hippokrates, the "Elements" ("stoi-

cheia"), the title of all Greek axiomatic treatises in-

cluding that of Euclid. Hippokrates investigated the

areas of plane figures bounded by straight lines as well

as circular arcs. The areas of similar circular segments,

he teaches, are to each other as the squares of their

chords. Pythagoras' theorem is known to him and so is

the corresponding inequality for non-rectangular tri-

angles. The whole treatise is already in what might be

called the Euclidean tradition, but it is older than Eu-

clid by more than a century.

The problem of the quadrature of the circle is one of

the "three famous mathematical problems of anti-

quity," which in this period began to be a subject of

study. These problems were:

(1) The trisection of the angle; that is, the problem

of dividing a given angle into three equal parts.

(2) The duplication of the cube; that is, to find the

'For a modern analysis see E. Landau, Uber quadrirbare A'rets-

boqenzxoeiecke, Berichte Berliner Math. Ges. 2 (1903) pp. 1-6.
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side of a cube of which the volume is twice that

of a given cube (the so-called Delic cube.)

(3) The quadrature of the circle; that is, to find the

square of an area equal to that of a given square.

The importance of these problems lies in the fact that

they cannot be geometrically solved by the construction

of a finite number of straight lines and circles except

by approximation, and therefore they served as a means

of penetration into new fields of mathematics. They led

to the discovery of the conic sections, and some cubic

and quartic curves, and to one transcendental curve,

the quadratrix. The anecdotic forms, in which the prob-

lems have occasionally been transmitted (Delphic

oracles, etc.) should not prejudice us against their

fundamental importance. It occurs not infrequently

that a fundamental problem is presented in the form

of an anecdote or a puzzle—Newton's apple, Cardan's

broken promise, or Kepler's wine barrels. Mathema-

ticians of different periods, including our own, have

shown the connection between these Greek problems

and the modern theory of equations, involving con-

siderations concerning domains of rationality, algebraic

numbers, and group theory.

4. Probably outside of the group of sophists, who

were in some degree connected with the democratic

movement, stood another group of mathematically in-

clined philosophers related to the aristocratic factions.

They called themselves Pythagoreans after a rather

mythical founder of the school, Pythagoras, supposedly

a mystic, a scientist, and an aristocratic statesman.

5
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Where most sophists emphasized the reality of change,

the Pythagoreans stressed the study of the unchange-

able elements in nature and society. In their search for

the eternal laws of the universe they studied geometry,

arithmetic, astronomy, and music (the"quadrivium").

Their most outstanding leader was Archytas of Taren-

tum who lived about 400 and to whose school, if we
follow the hypothesis of E. Frank, much of the "Pytha-

gorean" brand of mathematics may be ascribed. Its

arithmetic was a highly speculative science, which had

little in common with the contemporary Babylonian

computational technique. Numbers were divided into

classes, odd, even, even-times-even, odd-times-odd,

prime and composite, perfect, friendly, triangular,

square, pentagonal, etc. Some of the most interesting

results concern the "triangular numbers," which repre-

sent a link between geometry and arithmetic

:

• 1, • • 3, • • • 6, • • • • 10, etc.

Our name "square numbers" had its origin in Pytha-

gorean speculations:

• 1, • • 4, • • • 9, etc.

The figures themselves are much older, since some of

them appear on neolithic pottery. The Pythagoreans

investigated their properties, adding their brand of

number mysticism and placing them in the center of a
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cosmic philosophy which tried to reduce all relations

to numtar relations ("everything is number"). A point

was "unity in position."

The Pythagoreans knew some properties of regular

polygons and regular bodies. They showed how the

plane can be filled by means of patterns of regular

triangles, squares, or regular hexagons, and space by

cubes, to which Aristotle later tried to add the wrong

notion that space can be filled by regular tetrahedra.

The Pythagoreans may have also known the regular

oktahedron and dodekahedron the latter figure be-

cause pyrite, found in Italy, crystallizes in dodekahedra,

and models of such figures as ornaments or magical

symbols date back to Etruscan times.

As to Pythagoras' theorem, the Pythagoreans as-

cribed its discovery to their master who was supposed

to have sacrificed a hundred oxen to the gods as a token

of gratitude. We have seen that the theorem was al-

ready known in Hammurabi's Babylon, but the first

general proof may very well have been obtained in the

Pythagorean school.

The most important discovery ascribed to the Pytha-

goreans was the discovery of the irrational by means of

incommensurable line segments. This discovery may
have been the result of their interest in the geometric

mean a : 6 = b : c, which served as a symbol of aristo-

cracy. What was the geometric mean of 1 and 2, two

sacred symbols? This led to the study of the ratio of

the side and the diagonal of a square, and it was found

that this ratio could not be expressed by "numbers"

—

that is, by what we now call rational numbers (integers

or fractions), the only numbers recognized as such.
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Suppose that this ratio be p : q, in which we can always take
numbers p and q relative prime Then p* = 2q*. hence jp, and
therefore p, is even, say p = 2r. Then q must be odd, but since

a* = 2rl
, it must also be even. This contradiction was not solved,

as in the Orient or in Renaissance Europe, by an extension of the

conception of number, but by rejecting the theory of numbers for

such cases and looking for a synthesis in geometry.

This discovery, which upset the easy harmony be-
tween arithmetics and geometry, was probably made in

the last decades of the Fifth Century B.C. It came on
top of another difficulty, which had emerged from the

arguments concerning the reality of change, arguments
which have kept philosophers busy from then until the
present. This difficulty has been ascribed to Zeno of

Elea (c. 450 B.C.), a pupil of Parmenides, a conservative

philosopher who taught that reason only recognizes

absolute being, and that change is only apparent. It

received mathematical significance when infinite pro-

cesses had to be studied in such questions as the deter-

mination of the volume of a pyramid. Here Zeno's

paradoxes came in conflict with some ancient and in-

tuitive conceptions concerning the infinitely small and
the infinitely large. It was always believed that the sum
of an infinite number of quantities can be made as large

as we like, even if each quantity is extremely small

(» X t = »), and also that the sum of a finite or

infinite number of quantities of dimension zero is zero

(n X = 0, » X = 0). Zeno's criticism challenged

these conceptions and his four paradoxes created a stir

of which the ripples can be observed to-day. They have
been preserved by Aristotle and are known as the
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Achilles, the Arrow, the Dichotomy, and the Stadium.

They are phrased so as to stress contradictions in the

conception of motion and of time; no attempt is made

to solve the contradictions.

The gist of the reasoning will be clear from the

Achilles and the Dichotomy, which we explain in our

own words as follows:

Achilles. Achilles and a tortoise move in the same direction on

a straight line. Achilles is much faster than the tortoise, but in

order to reach the tortoise he must first pass the point P from

which the tortoise started. If he comes to P, the tortoise has

advanced to point Pi. Achilles cannot reach the tortoise until he

passed Pi, but the tortoise has advanced to a new point Pj. If

Achilles is at Ps , the tortoise has reached a new point P,, etc.

Hence Achilles can never reach the tortoise.

Dichotomy. Suppose I like to go from A to B along a line. In

order to reach B, I must first traverse half the distance AB, of AB,

and in order to reach B, I must first reach B, half way between

A and B,. This goes on indefinitely, so that the motion can never

even begin.

Zeno's arguments showed that a finite segment can

be broken up into an infinite number of small segments

each of finite length. They also showed that there is

a difficulty in explaining what we mean by saying that

a line is "composed of" points. It is very likely that

Zeno himself had no idea of the mathematical impli-

cations of his arguments. Problems leading to his para-

doxes have regularly appeared in the course of philo-

sophical and theological discussions; we recognize them

as problems concerning the relation of the potentially

and the actually infinite. Paul Tannery, however, be-

lieved that Zeno's arguments were particularly directed
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against the Pythagorean idea of the space as sum of
points ("the point is unity in position")'. Whatever the
truth may be, Zeno's reasoning certainly influenced
mathematical thought for many generations. His para-
doxes may be compared to those used by Bishop Ber-
keley in 1734, when he showed the logical absurdities
to which poor formulation of the principles of the cal-

culus may lead, but without offering a better foundation
himself.

Zeno's arguments began to worry the mathematicians
even more after the irrational had been discovered. Was
mathematics as ah exact science possible? Tannery2

has suggested that we may speak of "a veritable logical

scandal"—of a crisis in Greek mathematics. If this is

the case, then this crisis originated in the later period
of the Peloponnesian war, ending with the fall of Athens
(404). Wc may then detect a connection between the
crisis in mathematics and that of the social system, since
the fall of Athens spelled the doom of the empire of a
slavc-'owning democracy and introduced a new period
of aristocratic supremacy—a crisis which was solved
in the spirit of the new period.

5. Typical of this new period in Greek history was
the increasing wealth of certain sections of the ruling

"P. Tannery, La geomitrie grecque (Paris, 1887) pp. 217-261.
Another opinion in B. L. Van der Waerden, Math Annalen 117
(1940) pp. 141-161.

P. Tannery, La giomtlrie grecque (Paris, 1887) p. 98. Tannery,
at this place, deals only with the breakdown of the ancient theory
of proportions as a result of the discovery of incommensurable
line segments.
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classes combined with equally increased misery and
insecurity of the poor. The ruling classes based their

material existence more and more upon slavery, which
allowed them leisure to cultivate arts and sciences, but
made them also more and more averse to all manual
work. A gentleman of leisure looked down upon work
which slaves and craftsmen did and sought relief from
worry in the study of philosophy and of personal ethics.
Plato and Aristotle expressed this attitude; and it is

in Plato's "Republic" (written perhaps c. 360) that we
find the clearest expression of the ideals of the slave-
owning aristocracy. The "guards" of Plato's republic
must study the "quadrivium," consisting of arithmetic,
geometry, astronomy, and music, in order to understand
the laws of the universe. Such an intellectual atmosphere
was conducive (at any rate in its earlier period) to a
discussion of the foundations of mathematics and to
speculative cosmogony. At least three great mathe-
maticians of this period were connected with Plato's
Academy, namely, Archytas, Theactetos (d. 369), and
Eudoxos (c. 408-355). Theaetetos has been credited
with the theory of irrationals as it appears in the tenth
book of Euclid's "Elements." Eudoxos' name is con-
nected with the theory of proportions which Euclid
gave in his fifth book, and also with the so-called
"exhaustion" method, which allowed a rigorous treat-
ment of area and volume computations. This means
that it was Eudoxos who solved the "crisis" in Greek
mathematics, and whose rigorous formulations helped
to decide the course of Greek axiomatics and, to a con-
siderable extent, of Greek mathematics as a whole.
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Eudoxos' theory of proportions did away with the

arithmetical theory of the Pythagoreans, which applied

to commensurable quantities only. It was a purely geo-

metrical theory, which, in strictly axiomatic form, made
all reference to incommensurable or commensurable

magnitudes superfluous.

Typical is Def . 5, Book V of Euclid's " Elements"

:

"Magnitudes are said to be in the same ratio, the first to the

second and the third to the fourth, when, if any equimultiples

whatever be taken of the first and third, and any equimultiples

whatever of the second and fourth, the former equimultiples

alike exceed, are alike equal to, or are alike less than, the latter

equimultiples taken in corresponding order".

The present theory of irrational numbers, developed

by Dedekind and Weierstrass, follows Eudoxos' mode
of thought almost literally but by using modern arith-

metical methods has opened far wider perspectives.

The "exhaustion method" (the term "exhaust" ap-

pears first in Gregoire de Saint Vincent, 1647) was the

Platonic school's answer to Zeno. It avoided the pitfalls

of the infinitesimal by simply discarding them, by re-

ducing problems which might lead to infinitesimals to

problems involving formal logic only. When, for in-

stance, it was required to prove that the volume V of a

tetrahedron is equal to one third the volume P of a

prism of equal base and altitude, the proof consisted

in showing that both the assumptions V > 1/3 P and
V < 1/3P lead to absurdities. For this purpose an axiom

was introduced, now known as the axiom of Archi-

medes, and which also underlies Eudoxos' theory of
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proportions, namely, that "magnitudes are said to have

a ratio to one another which are capable, when multi-

plied, of exceeding one another" (Euclid V, Def. 4)
1
.

This method, which became the standard Greek and

Renaissance mode of strict proof in area and volume

computation, was quite rigorous, and can easily be

translated into a proof satisfying the requirements of

modern analysis. It had the great disadvantage that the

result, in order to be proved, must be known in advance,

so that the mathematician finds it first by some other,

less rigorous and more tentative method.

There are clear indications that such an other method

was actually used. We possess a letter from Archimedes

to Erathostenes (c. 250 B.C.), which was not discovered

until 1906, in which Archimedes described a non-rigor-

ous but fertile way of finding results. This letter is

known as the "Method". It has been suggested, notably

by S. Luria, that it represented a school of mathe-

matical reasoning competing with the school of Eu-

doxos, also dating back to the period of the "crisis"

and associated with the name of Democritus, the

founder of the atom theory. In Democritus' school,

according to the theory of Luria, the notion of the

"geometrical atom" was introduced. A line segment,

an area, or a volume was supposed to be built up of

a large, but finite, number of indivisible "atoms." The
computation of a volume was the summation of the

•Archimedes' version (which he explicitly attributes to Eudoxos)

is: '"When two spaces are unequal, then it is possible to add to

itself the difference by which the lesser is surpassed by the greater,

so often that every finite space will be exceeded" (in On the

Sphere and the Cylinder).
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volumes of all the "atoms" of which this body consists.

This theory sounds perhaps absurd, until we realise

that several mathematicians of the period before New-
ton, notably Viete and Kepler, used essentially the

same conceptions, taking the circumference of a circle

as composed of a very large number of tiny line seg-

ments. There is no evidence that antiquity ever de-

veloped a rigorous method on this foundation, but our

modern limit conceptions have made it possible to

build this "atom" theory into a theory as rigorous as

the exhaustion method. Even today we use this con-

ception of the "atoms" quite regularly by setting up a

mathematical problem in the theory of elasticity, in

physics or in chemistry, reserving the rigorous "limit"

theory to the professional mathematician 1

.

The advantage of the "atom" method over the "ex-

haustion" method was that it facilitated the finding of

new results. Antiquity had thus the choice between a

rigorous but relatively sterile, and a loosely founded

but far more fertile, method. It is instructive that in

practically all the classical texts the first method was

used. This again may have a connection with the fact

that mathematics had become a hobby of a leisure class,

basing itself on slavery, indifferent to invention, and

interested in contemplation. It may also be a reflection

of the victory of Platonic idealism over Dcmokritian

'"Thus, so far as first differentials arc concerned, a small part

of a curve near a point may be considered straight and a part of

a surface plane; during a short time a particle may be considered

as moving with constant velocity and any physical process as

occurring at a constant rate". (H. B. Phillips, Differential Equa-

tions, London, 1922. p. 7.)
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materialism in the realm of mathematical philosophy.

6. In 334 Alexander the Great began his conquest of

Persia. When he died at Babylon in 323 the whole

Near East had fallen to the Greeks. Alexander's con-

quests were divided among his generals and eventually

three empires emerged: Egypt under the Ptolemies;

Mesopotamia and Syria under the Seleucids; and Mace-
donia under Antigonos and his successors. Even the

Indus valley had its Greek princes. The period of Hel-

lenism had begun.

The immediate consequence of Alexander's campaign

was that the advance of Greek civilization over large

sections of the Oriental world was accelerated. Egypt
and Mesopotamia and a part of India were Hellenized.

The Greeks flooded the Near East as traders, merchants,

physicians, adventurers, travellers, and mercenaries.

The cities—many of them newly founded and recog-

nizable by their Hellenistic names—were under Greek

military and administrative control, and had a mixed

population of Greeks and Orientals. But Hellenism was

essentially an urban civilization. The country-side re-

mained native and continued its existence in the tra-

ditional way. In the cities the ancient Oriental culture

met with the imported civilization of Greece and partly

mixed with it, though there always remained a deep

separation between the two worlds. The Hellenistic

monarchs adopted Oriental manners, had to deal with

Oriental problems of administration, but stimulated

Greek arts, letters, and sciences.

Greek mathematics, thus transplanted to new sur-

roundings, kept many of its traditional aspects, but

experienced also the influence of the problems in ad-

ministration and astronomy which the Orient had to

solve. This close contact of Greek science with the

Orient was extremely fertile, especially during the first

centuries. Practically all the really productive work

which we call "Greek mathematics" was produced in

the relatively short interval from 350 to 200 B.C., from

Eudoxos to Apollonius, and even Eudoxos' achieve-

ments are only known to us through their interpreta-

tion by Euclid and Archimedes. And it is also remark-

able that the greatest flowering of this Hellenistic math-

ematics occurred in Egypt under the Ptolemies and

not in Mesopotamia, despite the more advanced status

of native mathematics in Babylonia.

The reason for this development may be found in the

fact that Egypt was now in a central position in the

Mediterranean world. Alexandria, the new capital, was

built on the sea coast, and became the intellectual and

economic center of the Hellenistic world. But Babylon

lingered on only as a remote center of caravan roads,

and eventually disappeared to be replaced by Ktesi-

phon-Seleucia, the new capital of the Seleucids. No
great Greek mathematicians, as far as we know, were

ever connected with Babylon. Antioch and Pergamum,
also cities of the Seleucid Empire but closer to the

Mediterranean, had important Greek schools. The de-

velopment of native Babylonian astronomy and mathe-

matics even reached its height under the Seleucids, and

Greek astronomy received an impetus, the importance

of which is only now beginning to be better understood.

Beside Alexandria there were some other centers of

mathematical learning, especially Athens and Syracuse.
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Athens became an educational center, while Syracuse

produced Archimedes, the greatest of Greek mathe-

maticians.

7. In this period the professional scientist appeared,

a man who devoted his life to the pursuit of knowledge

and received a salary for doing it. Some of the most

outstanding rppresentatives of this group lived in Alex-

andria, where the Ptolemies built a great center of

learning in the so-called Museum with its famous

Library. Here the Greek heritage in science and litera-

ture was preserved and developed. The success of this

enterprise was considerable. Among the first scholars

associated with Alexandria was Euclid, one of the

most influential mathematicians of all times.

Euclid, about whose life nothing is known with any

certainty, lived probably during the time of the first

Ptolemy (306-283), to whom he is supposed to have

remarked that there is no royal road to geometry. His

most famous and most advanced texts are the thirteen

books of his "Elements" ("stoicheia"), though he is

also credited with several other minor texts. Among
these other texts are the "Data," containing what we
would call applications of algebra to geometry but pre-

sented in strictly geometrical language. We do not know
how many of these texts are Euclid's own and how many
are compilations, but they show at many places an
astonishing penetration. They are the first full mathe-

matical texts that have been preserved from Greek

antiquity.

The" Elements" form, next to the Bible, probably the

book most reproduced and studied in the history of

the Western world. More than a thousand editions have

appeared since the invention of printing and before

that time manuscript copies dominated much of the

teaching of geometry. Most of our school geometry is

taken, often literally, from six of the thirteen books;

and the Euclidean tradition still weighs heavily on our

elementary instruction. For the professional mathema-

tician these books have always had an inescapable

fascination, and their logical structure has influenced

scientific thinking perhaps more than any other text

in the world.

Euclid's treatment is based on a strictly logical de-

duction of theorems from a set of definitions, postulates,

and axioms. The first four books deal with plane geo-

metry and lead from the most elementary projwrties

of lines and angles to the congruence of triangles) the

equality of areas, the theorem of Pythagoras (I, 47),

the construction of a square equal to a given rectangle,

the golden section, the circle, and the regular polygons.

The fifth book presents Eudoxos' theory of incommen-

surables in its purely geometrical form, and in the sixth

book this is applied to the similarity of triangles. This

introduction of similarity at such a late stage is one

of the most important differences between Euclid's pre-

sentation of plane geometry and the present one, and

must be ascribed to the emphasis laid by Euclid on

Eudoxos' novel theory of incommensurablcs-. The geo-

metrical discussion is resumed in the tenth book, often

considered Euclid's most difficult one, which contains

a geometrical classification of quadratic irrationals and
of their quadratic roots, hence of what we call numbers

of a form Va + Vb. The last three books deal with
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solid geometry and lead via solid angles, the volumes

of parallelepipeds, prisms, and pyramids to the sphere

and to what seems to have been intended as the climax:

the discussion of the five regular ("Platonic") bodies

and the proof that only five such bodies exist.

Books VII-IX are devoted to number theory—not to

computational technique but to such Pythagorean sub-

jects as the divisibility of integers, the summation of the

geometrical series, and some properties of prime num-
bers. There we find both "Euclid's algorithm" to find

the greatest common divisor of a given set of numbers,

and "Euclid's theorem" that there are an infinite num-
ber of primes (IX, 20). Of particular interest is theorem

VI, 27, which contains the first maximum problem that

has reached us, with the proof that the square, of all

rectangles of given perimeter, has maximum area. The
fifth postulate of Book I (the relation between "axioms"

and "postulates" in Euclid is not clear) is equivalent to

the so-called "parallel axiom", according to which one

and only one line can be drawn through a point parallel

to a given line. Attempts to reduce this axiom to a theo-

rem led in the Nineteenth Century to a full appreciation

of Euclid's wisdom in adopting it as an axiom and to

the discovery of other, so-called non-euclidean geo-

metries.

Algebraic reasoning in Euclid is cast entirely into

geometrical form. An expression y/A is introduced as

the side of a square of area A, a product a6 as the area

of a rectangle with sides a and b. This mode of ex-

pression was prinarily due to Eudoxos' theory of pro-

portions, which consciously rejected numerical expres-

sions for line segments and in this way dealt with in-
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commensurables in a purely geometrical way—"num-

bers" being conceived only as integers or rational frac-

tions.

What was Euclid's purpose in writing his "Ele-

ments"? We may assume with some confidence that

he wanted to bring together into one text three great

discoveries of the recent past: Eudoxos' theory of pro-

portions, Theactetos' theory of irrationals, and the

theory of the five regular bodies which occupied an

outstanding place in Plato's cosmology. These were all

three typically " Greek" achievements.

8. The greatest mathematician of the Hellenistic per-

iod—and of antiquity as a whole—was Archimedes

(287-212) who lived in Syracuse as adviser to King

Hiero. He is one of the few scientific figures of antiquity

who is more than a name; several data about his life

and person have been preserved. We know that he was

killed when the Romans took Syracuse, after he placed

his technical skill at the disposal of the defenders of

the city. This interest in practical applications strikes

us as odd if we compare it to the contempt in which

such interest was held in the Platonic school of his

contemporaries, but an explanation is found in the much

quoted statement in Plutarch's "Marcellus", that

"although these inventions had obtained for him the reputa-

tion of more than human sagacity, he did not deign to leave

behind any written work on such subjects, but, regarding as

ignoble and sordid the business of mechanics and every sort of

art which is directed to use and profit, he placed his whole ambi-

tion in those speculations the beauty and subtlety of which are

untainted by any admixture of the common needs of life".

6
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The most important contributions which Archimedes

made to mathematics were in the domain of what we
now call the integral calculus,—theorems on areas of

plane figures and on volumes of solid bodies. In his

"Measurement of the Circle" he found an approxima-

tion of the circumference of the circle by the use of

inscribed and circumscribed regular polygons. Extend-

ing his approximation to polygons of 96 sides he found

(in our notation)

:

*<•
284j

4_ < 3

2847
£

201774

< t < 3

667
|

4673±

<3

which is usually expressed by saying that x is about

equal to 3=. In Archimedes' book "On the Sphere and

Cylinder" we find the expression for the area of the

sphere (in the form that the area of a sphere is four times

that of a great circle) and for the volume of a sphere

(in the form that this volume is equal to 2/3 of the

volume of the circumscribed cylinder). Archimedes' ex-

pression for the area of a parabolic segment (4/3 the

area of the inscribed triangle with the same base as the

segment and its vertex at the point where the tangent

is parallel to the base) is found in his book on "The

'3.1409 < i < 3.1429. The arithmetic mean of upper and
lower limit gives x = 3.1419. The correct value is 3.14159

Quadrature of the Parabola." In the book on "Spirals"

we find the "Spiral of Archimedes", with area compu-

tations; in "On Conoids and Spheroids" we find the

volumes of certain quadratic surfaces of revolution.

Archimedes' name is also connected with his theorem

on the loss of weight of bodies submerged in a liquid,

which can be found in his book "On Floating Bodies,"

a treatise on hydrostatics.

In all these works Archimedes combined a surprising

originality of thought with a mastery of computational

technique and rigor of demonstration. Typical of this

rigor is the "axiom of Archimedes" already quoted

and his consistent use of the exhaustion method to

prove the results of his integration. We have seen how

he actually found these results in a more heuristic way

(by "weighing" infinitesimals); but he subsequently

published them in accordance with the strictest re-

quirements of rigor. In his computational proficiency

Archimedes differed from most of the productive Greek

mathematicians. This gave his work, with all its typ-

ically Greek characteristics, a touch of the Oriental.

This touch is revealed in his "Cattle Problem," a very

complicated problem in indeterminate analysis which

may be interpreted as a problem leading to an equation

of the "Pell" type:

t
1 - 4729494 u

2 = 1,

which is solved by very large numbers.

This is only one of many indications that the Platonic

tradition never entirely dominated Hellenistic mathe-

matics; Hellenistic astronomy points in the same direc-

tion.
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9. With the third groat Hellenistic mathematician,

Apollonios of Perga (c. 260-c. 170) we are again entirely

within the Greek geometrical tradition. Apollonios,

who seems to have taught at Alexandria and at Per-

gamum, wrote a treatise of eight books on "Conies,"

of which seven have survived, three only in an Arabic

translation. It is a treatise on the ellipse, parabola,

and hyperbola, introduced as sections of a circular

cone, and penetrates as far as the discussion of the

evolutcs of a conic. We know these conies by the names
found in Apollonios* they refer to certain area properties

of these curves, which are expressed in our notation by
the equations (homogeneous notation, p, d are lines

in Apollonios) y
2 = px;y

3 =px ±^x3
(the plus gives

the hyperbola, the minus the ellipse). Parabola here

means "application," ellipse "application with defici-

ency," hyperbola "application with excess." Apollonios

did not have our coordinate method because he had no
algebraic notation (probably rejecting it consciously

under influence of the school of Eudoxos). Many of his

results, however, can be transcribed immediately into

coordinate language—including his property of the evo-

lutes, which is identical with the Cartesian equation.
1

This can also be said for other books by Apollonios,

of which parts have been preserved and which contain

"algebraic" geometry in geometrical and therefore ho-

'"My thesis, then, is that the essence of analytic geometry is

the study of loci by means of their equations, and that this was
known to the Greeks and was the basis of their study in conic

sections." J. L. Coolidge, A History of Geometrical Methods {Ox-
ford, 1940) p. 119. Sec, howeVer, our remarks on Descartes.
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mogeneous language. Here we find Apollonios ' tangency

problem which requires the construction of the circles

tangent to three given circles; the circles may be re-

placed by straight lines or points. In Apollonios we

meet for the first time in explicit form the requirement

that geometrical constructions be confined to compass

and ruler only, which therefore was not such a general

"Greek" requirement as is sometimes believed.

10. Mathematics, throughout its history and until

modern times, cannot be separated from astronomy.

The needs of irrigation and of agriculture in general

—

and to a certain extent also of navigation—accorded

to astronomy the first place in Oriental and in Hellen-

istic science, and its course determined to no small

extent that of mathematics. The computational and

often also the conceptual content of mathematics was

largely conditioned by astronomy, and the progress of

astronomy depended equally on the power of the mathe-

matical books available. The structure of the planetary

system is such that relatively simple mathematical

methods allow far reaching results, but are at the same

time complicated enough to stimulate improvement of

these methods and of the astronomical theories them-

selves. The Orient itself had made considerable ad-

vances in computational astronomy during the period

just preceeding the Hellenistic era, especially in Meso-

potamia during the late Assyrian and Persian periods.

Here observations consistently carried on over a long

period had allowed a remarkable understanding of many

ephemerides. The motion of the moon was one of the

most challenging of all astronomical problems to the
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mathematician, in antiquity as well as in the Eighteenth

Century, and Babylonian ("Chaldean") astronomers

devoted much effort to its study. The meeting of Greek

and Babylonian science during the Seleucid period

brought great computational and theoretical advance-

ment, and where Babylonian science continued in the

ancient calendaric tradition, Greek science produced

some of its most significant theoretical triumphs.

The oldest known Greek contribution to theoretical

astronomy was the planetary theory of the same Eu-

doxos who inspired Euclid. It was an attempt to explain

the motion of the planets (around the earth) by assum-

ing the super-position of four rotating concentric spheres,

each with its own axis of rotation with the ends fixed

on the enclosing sphere. This was something new, and

typically Greek, an explanation rather than a chronicle

of celestial phenomena. Despite its crude form Eudoxos'

theory contained the central idea of all planetary theories

until the Seventeenth Century, which consisted in the ex-

planation of irregularities in the apparent orbits of moon
and planets by the superposition of circular movements.

It still underlies the computational side of our modern

dynamic theories as soon as we introduce Fourier series.

Eudoxos was followed by Aristarchos of Samos (c. 280

B.C.), the " Copernicus of antiquity," credited by Archi-

medes with the hypothesis that the sun, and not the

earth, is the center of the planetary motion. This hy-

pothesis found few adherents in antiquity, though the

belief that the earth rotates about its axis had a wide

acceptance. The small success of the heliocentric hy-

pothesis was mainly due to the authority of Hipparchos,

often considered the great«st astronomer of antiquity.

^
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Hipparchos of Nicaca made observations between

161-126 B.C. Little of his work has come to us directly,

the main source of our knowledge of his achievements

coming through Ptolemy who lived three centuries later.

Much of the contents of Ptolemy's great work, the

"Almagest," may be ascribed to Hipparchos, especially

the use of eccentric circles and epicycles to explain the

motion of sun, moon, and planets, as well as the dis-

covery of the precession of the equinoxes. Hipparchos

is also credited with a method to determine latitude

and longitude by astronomical means, but antiquity

never was able to muster a scientific organization suf-

ficient to do any large scale mapping. (Scientists in

antiquity were very thinly scattered, both in locality

and in time.) Hipparchos' work was closely connected

with the achievements of Babylonian astronomy, which

reached great heights in this period; and we may see

in this work the most important scientific fruit of the

Greek—Oriental contact of the Hellenistic period.'

11. The third and last period of antique society is

that of the Roman domination. Syracuse fell to Rome

in 212, Carthage in 146, Greece in 146, Mesopotamia in

64, Egypt in 30 B.C. The whole Roman-dominated

Orient, including Greece, was reduced to the status of

a colony ruled by Roman administrators. This control

did not affect the economic structure of the Oriental

countries as long as the heavy taxes and other levies

were duly delivered. The Roman Empire naturally

'O. Nengebauer, Exact Science in Antiquity, Studies in Civiliza-

tion, Un. of Pennsylvania Bicentennial Conf. (Phila., 1942) pp.

22-31.
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split into a Western part with extensive agriculture

fitted for wholesale slavery, and an Eastern part with
intensive agriculture which never used slaves except
for domestic duties and for public works. Despite the
growth of some cities and a commerce embracing the
whole of the known Western world, the entire economic
structure, of the Roman Empire remained based on
agriculture. The spread of a slave economy in such a
society was fatal to all original scientific work. Slave
owners as a class are seldom interested in technical

discoveries, partly because slaves can do all the work
cheaply, and partly because they fear to give any tool

into the hands of slaves which may sharpen their in-

telligence. Many members of the ruling class dabbled
in the arts and sciences, but this very dabbling pro-

moted mediocrity rather than productive thinking.

When with the decline of the slave market Roman
economy declined, there were few men to cultivate even
the mediocre science of the past centuries.

As long as the Roman Empire showed some stability,

Eastern science continued to flourish as a curious blend
of Hellenistic and Oriental elements. Though originality

and stimulation gradually disappeared, the pax Romano.
lasting for many centuries allowed undisturbed specu-
lation along traditional lines. Coexistent with the pax
Romana was for some centuries the pax Sinensis; the
Eurasian continent in all its history never knew such
a period of uninterrupted peace as under the Antonins
in Rome and the Han in China. This made the diffusion

of knowledge over the continent from Rome and Athens
to Mesopotamia, China, and India easier than ever
before. Hellenistic science continued to flow into China
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and India and was influenced in its turn by the science

of those countries. Glimpses of Babylonian astronomy

and Greek mathematics came to Italy, Spain, and Gaul,

—an example is the spread of the sexagesimal division

of angle and hour over the Roman Empire. There exists

a theory of E. Woepcke which traces the spread of the

so-called Hindu-Arabic numerals over Europe to Neo-

Pythagorean influences in the later Roman Empire.

This may be true, but if the spread of these numerals

goes back that far, then it is more likely due to the

influences of trade rather than of philosophy.

Alexandria remained the center of antique mathe-

matics. Original work continued, though compilation

and commentarization became more and more the prom-

inent form of science. Many results of the ancient

mathematicians and astronomers have been transmitted

to us through the works of these compilers; and it is

sometimes quite difficult to find out what they trans-

cribed and what they discovered themselves. In trying

to understand the gradual decline of Greek mathematics

we must also take its technical side into account: the

clumsy geometrical mode of expression with the con-

sistent rejection of algebraic notation, which made any

advance beyond the conic sections almost impossible.

Algebra and computation were left to the despised Ori-

entals, whose lore was covered by a veneer of Greek

civilization. It is wrong, however, to believe that Alex-

andrian mathematics was purely "Greek" in the tradi-

tional Euclidean-Platonic sense; computational arith-

metics and algebra of an Egyptian-Babylonian type

was cultivated side by side with abstract geometri-

cal demonstrations. We have only to think of Ptolemy,
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Heron, and Diophantos to become convinced of this

fact. The only tie between the many races and schools
was the common use of Greek.

12. One of the earliest Alexandrian mathematicians
of the Roman, period was Nicomachos of Gerasa (A.D.
100) whose "Arithmetic Introduction" is the most com-
plete exposition extant of Pythagorean arithmetic. It

deals in great part with the same subjects as the arith-
metical books of Euclid's "Elements," but where Euclid
represents numbers by straight lines, Nicomachos uses
arithmetical notation with ordinary language when un-
determined numbers are expressed. His treatment of
polygonal numbers and pyramidal numbers was of in-

fluence on medieval arithmetic, especially through Boe-
tius.

One of the greatest documents of this second Alex-
andrian period was Ptolemy's "Great Collection," bet-
ter known under the Arabicized title of "Almagest"
(c. 150 A.D.). The "Almagest" was an astronomical
opus of supreme mastership and originality, even if

many of the ideas may have come from Hipparchos or
Kidinnu and other Babylonian astronomers. It also
contained a trigonometry, with a table of chords be-
longing to different angles, equivalent to a sine table of
angles ranging from 0° to 90°, ascending by halves of an
angle. Ptolemy found for the chord of 1° the value

(1, 2, 50), = ^ + ^ -(- H = .017268; the correct

value is .017453; for* the value (3, 8, 30) = 3.14166.
We find in the "Almagest" the formula for the sine and
cosine of the sum and difference of two angles, together
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with a beginning of spherical trigonometry. The theo-

rems were expressed in geometrical form— our present

trigonometrical notation only dates from Euler in the

Eighteenth Century. We also meet in this book "Ptole-

my's theorem" for a quadrilateral inscribed in a circle.

In Ptolemy's "Planisphaerium" we find a discussion of

stereographic projection and of latitude and longitude

in a sphere, which are ancient examples of coordinates.

Somewhat older than Ptolemy was Menelaos (c. 100

A.D.), whose "Sphaerica" contained a geometry of the

sphere, with a discussion of spherical triangles, a subject

which is missing in Euclid. Here we find "Menelaos'

theorem" for the triangle in its extension to the sphere.

Where Ptolemy's astronomy contained a good deal of

computational work in sexagesimal fractions, Menelaos'

treatise was geometrical in the pure Euclidean tradition.

To the period of Menelaos may also belong Heron,

at any rate we know that he described accurately a

lunar eclipse of 62 A.D 1
. Heron was an encyclopedic

writer who wrote on geometrical, computational, and

mechanical subjects; they show a curious blend of the

Greek and Oriental. In his "Metrica" he derived the

" Hcronic" formula for the area of a triangle A =

\Zs(.s — a)(s — b)(s — c) in purely geometrical form;

the proposition itself has been ascribed to Archimedes.

In the same "Metrica" we find typical Egyptian unit

fractions, as in the approximation of \/63 by 7 + ^ +

I j_ I _|- — Heron's formula for the volume of a frus-

4 8 16

O. Ncugebauer. Ober eine Melhode zur Dislanzbeglimmung

Alexandria—Rom bei Heron. Hist. fil. Medd. Danske Vid. Sels.

26 (1938) No. 2, 28 pp.
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turn ofa square pyramid can readily be reduced to the
one found in the ancient Moscow Papyrus. His meas-
urement of the volume of the five regular polyhedra,
on the contrary, was again in the spirit of Euclid.

13. The Oriental touch is even stronger in the " Arith-
metica" of Diophantos (c. 250 A.D.). Only six of the
original books survive; their total number is a matter
of conjecture. Their skillful treatment of indeterminate
equations shows that the ancient algebra of Babylon
or perhaps India not only survived under the veneer of
Greek civilization but also was improved by a few active
men. How and when it was done is not known, just as
we do not know who Diophantos was—he may have
been a Hellenized Babylonian. His book is one of the
most fascinating treatises preserved from Greek-Roman
antiquity.

Diophantos' collection of problems is of wide varia-
tion and their solution is often highly ingenious. "Dio-
phantine analysis" consists in finding answers to such
indeterminate equations as Ax1 + Bx + C = if,

Ax3 + Bx3 + Cx + D = y
a
, or sets of these equations.

Typical of Diophantos is that he was only interested in

positive rational solutions; he called irrational solutions
"impossible" and was careful to select his coefficients

so as to get the positive rational solution he was looking
for. Among the equations we find x

a - 26y
3 =

1,

x' - 3(V = 1, now known as "Pell" equations. Dio-
phantos also has several propositions in the theory of
numbers, such as the theorem (III, 19) that if each of
two integers is the sura of two squares their product can
be resolved in two ways into two squares. There are
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theorems about the division of a number into the sum

of three and four squares.

In Diophantos we find the first systematic use of

algebraic symbols. He has a special sign for the un-

known, for the minus, for reciprocals. The signs are

still of the nature of abbreviations rather than alge-

braic symbols in our sense (they form the so-called

"rhetoric" algebra); for each power of the unknown

there exists a special symbol
1

. There is no doubt that

we have here not only, as in Babylon, arithmetical

questions of a definite algebraic nature, but also a

well developed algebraic notation which was greatly

conducive to the solution of problems of greater com-

plication than were ever taken up before.

14. The last of the great Alexandrian mathematical

treatises was written by Pappos (end Third Century),

His "Collection" ("Synagoge") was a kind of hand-

book to the study of Greek geometry with historical

annotations, improvements, and alterations of existing

theorems and demonstrations. It was to be read with

the original works rather than independently. Many
results of ancient authors arc known only in the form in

which Pappos preserved them. Examples are the prob-

lems dealing with the quadrature of the circle, the

duplication of the cube, and the trisection of the angle.

'Papyrus 620 of the University of Michigan, acquired in 1921»

contains some problems in Greek algebra dating to a period before

Diophantos, perhaps early second century A.D. Some symbols

found in Diophantos appear in this manuscript. See F. E. Robbing,

Classical Philology 24 (1929) pp. 321-329; K. Vogel, ib. 25 (1930)

pp. 373-375.
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Interesting is his chapter on isoperimetric figures in
which we find the circle has larger area than any regular
polygon of equal perimeter. Here is also the remark
that the cells in the honeycomb satisfy certain maxi-
mum-minimum properties.' Archimedes' semi-regular
solids are also known through Pappos. Like Diophantos'
Arithmetical the "Collection" is a challenging book

whose problems inspired much further research in later
days.

The Alexandrian school gradually died with the de-
cline of antique society. It remained, as a whole, a
bulwark of paganism against the progress of Christian-
ity, and several of its mathematicians have also left

J^on th
l

hi8t0'y °f ancient Ph'»osophy. Proclos

J? „
5)

'
whose 'Commentary on the First Book of

Euclid" is one of our main sources of the history of Greek
mathematics, headed a Neoplatonist school in Athens.
Another representative of this school, in Alexandria
was Hypatia, who wrote commentaries on the classical
mathematicians. She was murdered in 415 by the fol-
lowers of St. Cyril, a fate which inspired a novel by
Charles Kmgsley2

. These philosophical schools with
their commentators had their ups and downs for cen-
turies. The Academy in Athens was discontinued as
pagan by the Emperor Justinian (529), but by this

time there were again schools in such places as Con-
stantinople JundishapQr. Many old codices survived in
Constantinople, whilecommentatorscontinuedtoperpet-

'A full discussion of this problem in D'Arcy W. Thompson,On (.mirth <iml form (Cum bridge, 2nd cd., 1942)
'See also Voltaire. IHctionnavre Philcsoph^ue, art. Hypatie

(Oeuvres, ed., 1819, tome 36, p. 458).

uate the memory of Greek science and philosophy in the

Greek language. In630 Alexandriawas taken by the Arabs,

who replaced the upper layer of Greek civilization in

Egypt by an upper layer of Arabic. There is no reason

to believe that the Arabs destroyed the famous Alex-

andrian Library, since it is doubtful whether this library

still existed at that time. As a matter of fact, the Arabic

conquests did not materially change the character of

the mathematical studies in Egypt. There may have

been a retrogression, but when we hear of Egyptian

mathematics again it is still following the ancient

Greek-Oriental tradition (e.g. Alhazen).

15. We end this chapter with some remarks on Greek

arithmetic and logistics. Greek mathematicians made

a difference between " arithmetica" or science of num-

bers ("arithmoi") and "logistics" or practical compu-

tation. The term "arithmos" expressed only a natural

number, a "quantity composed of units" (Euclid VII,

Def. 2, this also meant that "one" was not considered

a number). Our conception of real number was un-

known. A line segment, therefore, had not always a

length. Geometrical reasoning replaced our work with

real numbers. When Euclid wanted to express that the

area of a triangle is equal to half base times altitude,

he had to state that it is half the area of a parallelo-

gram of the same base and lying between the same

parallels (Euclid I, 41). Pythagoras' theorem was a

relation between the areas of three squares and not

between the lengths of three sides. This conception

must be considered as a deliberate act brought about

by the victory of Platonic idealism among those sec-

7
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tions of the Greek ruling class interested in mathe-
matics, since the contemporary Oriental conceptions
concerning the relation of algebra and geometry did
not admit any restriction of the number concept.
There is every reason to believe that, for the. Baby-
lonians, Pythagoras' theorem was a numerical relation

between the lengths of sides, and it was this type of

mathematics with- which the Ionian mathematicians
had become acquainted.

Ordinary computational mathematics known as "lo-
gistics" remained very much alive during all periods
of Greek history. Euclid rejected it, but Archimedes
and Heron used it with ease and without scruples.
Actually it was based on a system of numeration which
changed with the times. The early Greek method of
numeration was based on an additive decimal principle
like that of the Egyptians and the Romans. In Alex-
andrian times, perhaps earlier, a method of writing
numbers appeared which was used for fifteen centuries,
not only by scientists but also by merchants and ad-
ministrators. It used the successive symbols of the
Greek alphabet to express, first our symbols 1,2, ,

9, then the tens from 10 to 90, and finally the hundreds
from 100 to 900 (<v = 1, = 2, etc.) Three extra archaic
letters were added to the 24 letters of the Greek alpha-
bet in order to obtain the necessary 27 symbols. With
the aid of this system every number less than 1000 could
be written with at most three symbols, e.g. 14 as 1 5,
since i = 10, 5 = 4; numbers larger than 1000 could be
expressed by a simple extension of the system. It is

used in the existing manuscripts of Archimedes, Heron,
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and all the other classical authors. There is archaeo-

logical proof that it was taught in the schools.

This was a decimal non-position system, both t5 and

5i could only mean 14. This lack of place value and the

use of no less than 27 symbols have occasionally been

laken as a proof of the inferiority of the system. The

case with which the ancient mathematicians used it,

its acceptance by Greek merchants even in rather com-

plicated transactions, its long persistence—in the East

Roman Empire until its very end in 1453—seem to

[joint to certain advantages. Some practice with the

system can indeed convince us that it is possible to

perform the four elementary operations easily enough

once the meaning of the symbols is mastered. Fractional

calculus with a proper notation is also simple ; but the

Greeks were inconsistent because of their lack of a

uniform system. They used Egyptian unit fractions,

Babylonian sexagesimal fractions, and also fractions in

a notation reminiscent of ours. Decimal fractions were

never introduced, but this great improvement appears

only late in the European Renaissance after the com-

putational apparatus had extended far beyond any-

thing ever used in antiquity; even then decimal frac-

tions were not adopted in many schoolbooks until the

Eighteenth and Nineteenth Century.

It has been argued that this alphabetical system has

been detrimental to the growth of Greek algebra, since

the use of letters for definite numbers prevented their

use for denoting numbers in general, as we do in our

algebra. Such a formal explanation of the absence of a

Greek algebra before Diophantos must be rejected, even
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if we accept the great value of an appropriate notation.
If the classical authors had been interested in algebra
they would have created the appropriate symbolism,
with which Diophantos actually made a beginning. The
problem of Greek algebra can be elucidated only by
further study of the connections between Greek mathe-
maticians and Babylonian algebra in the framework of
the entire relationship of Greece and the Orient.
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CHAPTER IV

The Orient after the Decline of Greek Society

1. The ancient civilization of the Near East never

disappeared despite all Hellenistic influence. Both Ori-

ental and Greek influences are clearly revealed in the

science of Alexandria; Constantinople and India were

also important meeting grounds of East and West. In

395 Theodosios I founded the Byzantine Empire; its

capital Constantinople was Greek, but it was the center

of administration of vast territories where the Greeks

were only a section of the urban population. For a

thousand years this empire fought against the forces

from the East, North, and West, serving at the same

time as a guardian of Greek culture and as a bridge

between the Orient and the Occident. Mesopotamia

became independent of the Romans and Greeks as

early as the second century A.D., first under the Par-

thian kings, later (266) under the purely Persian dy-

nasty of the Sassanians. The Indus region had for some

centuries several Greek dynasties, which disappeared by

the first century A.D.; but the native Indian kingdoms

which followed kept up cultural relations with Persia

and the West.

The political hegemony of the Greeks over the Near

East disappeared almost entirely with the sudden

growth of Islam. After 622, the year of the Hegira,

the Arabs conquered large sections of Western Asia in

an amazing sweep and before the end of the seventh

century had occupied parts of the West. Roman empire

83
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as far as Sicily, North Africa, and Spain. Wherever
they went they tried to replace the Greek-Roman
civilization by that of the Islam. The official language

became Arabic, instead of Greek or Latin; but the fact

that a new language was used for the scientific docu-
ments tends to obscure the truth that under Arabic rule

a considerable continuity of culture remained. The
ancient native civilizations had even a better chance

to survive under this rule than under the alien rule of

the Greeks. Persia, for instance, remained very much
the ancient country of the Sassanians, despite the

Arabic administration. However, the contest between
the different traditions continued, only now in a new
form. Throughout the whole period of Islamic rule there

existed a definite Greek tradition holding its own
against the different native cultures.

2. We have seen that the most glorious mathematical
results of this competition and blending of Oriental and
Greek culture during the heydays of the Roman Em-
pire appeared in Egypt. With the decline of the Roman
Empire the center of mathematical research began to

shift to India and later back to Mesopotamia. The first

well-preserved Indian contributions to the exact sciences

are the "Siddhantas," of which one, the "Surya," may
be extant in a form resembling the original one (c. 300-

400 A.D.). These books deal mainly with astronomy
and operate with epicycles and sexagesimal fractions.

These facts suggest influence of Greek astronomy, per-

haps transmitted in a period antedating the "Alma-
gest"; they also may indicate direct contact with Baby-
lonian astronomy. In addition the "Siddhantas" show
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many native Indian characteristics. The "Surya Sidd-

hanta" has tables of sines (jya) instead of chords.

The results of the "Siddhantas" were systematically

explained and extended by schools of Indian mathe-

maticians, mainly centered in Ujjain (Central India)

and Mysore (S. India). From the Fifth Century A.D.

on, names and books of individual Indian mathema-

ticians have been preserved ; some books are even avail-

able in English translations.

The best known of these mathematicians are Aryab-

hata (called "the first," c. 500) and Brahmagupta

(c. 625). The whole question of their indebtedness to

Greece, Babylon, and China is a subject of much con-

jecture; but they show at the same time considerable

originality. Characteristic of their work are the arith-

metical-algebraic parts, which bear in their love for

indeterminate equations some kinship to Diophantos.

These writers were followed in the next centuries by

others working in the same general field; their works

were partly astronomical, partly arithmetic-algebraical,

and had excursions into mensuration and trigonometry.

Aryabhata I had for it the value 3.1416. A favorite

subject was the finding of rational triangles and quadri-

laterals, in which Mahavira of the Mysore school (c.

850) was particularly prolific. Around 1150 we find m
Ujjain, where Brahmagupta had worked, another excel-

lent mathematician, Bhaskara. The first general solu-

tion of indeterminate equations of the first degree

ax + by = c(a.,b,e integers) is found in Brahmagupta.

It is therefore, strictly speaking, incorrect to call linear

indeterminate equations Diophantine equations. Where

Diophantos still accepted fractional solutions, the Hin-
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dus were only satisfied with integer solutions. They also

advanced beyond Diophantos in admitting negative
roots of equations, though this may again have been an
older practice suggested by Babylonian astronomy.
Bhaskara, for instance, solved x

2 — 45z = 250 by
x = 50 and x = —5; he indulged in some scepticism as
to the validity of the negative root. His "Lilavati"
was for many centuries a standard work on arithmetic
and mensuration in the East; the emperor Akbar had
it translated into Persian (1587). In 1832 an edition was
published in Calcutta'.

3. The best known achievement of Hindu mathe-
matics is our present decimal position system. The deci-

mal system is very ancient, and so is the position

system
;
but their combination seems to have originated

in India, where in the course of time it was gradually
imposed upon older non-position systems. Its first

known occurrence is on a plate of the year 595 A.D.,
where the date 346 is written in decimal place value
notation. The Hindus long before this epigraphic
record had a system of expressing large numbers by
means of words arranged according to a place value

Brahmagupta states somewhere in his book that some of his
problems were proposed "simply for pleasure". This confirms
that mathematics in the Orient had long since evolved from its

purely utilitarian function. One hundred and fifty years later
Alcuin, in the West, wrote his "Problems for the Quickening of
the Mind of the Young", expressing a similar non-utilitarian
purpose. Mathematics in the form of the intellectual puzzle
has often contributed essentially to the progress of science by
opening new fields. Some puzzles still await their integration
into the main body of mathematics.
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method. There are early texts in which the word

"Sunya," meaning zero, is explicitly used
1

. The so-

called Bakshali manuscript, consisting of seventy leaves

of birch bark of uncertain origin and date (estimates

range from the Third to the Twelfth Century A.D.),

and with traditional Hindu material on indeterminate

and quadratic equations as well as approximations, has

a dot to express zero. The oldest epigraphic record with

a sign for zero dates from the Ninth Century. This is

all much later than the occurrence of a sign for zero

in Babylonian texts.

The decimal place value system slowly penetrated

along the caravan roads into many parts of the Near

East, taking its place beside other systems. Penetration

into Persia, perhaps also Egypt, may very well have

happened in the Sassanian period (224-641), when the

contact between Persia, Egypt, and India Was close.

In this period the memory of the ancient Babylonian

place value system may still have been alive in Meso-

potamia. The oldest definite reference to the Hindu

place value system outside of India is found in a work

of 662 written by Severus Sebokht, a Syrian bishop.

With Al-Fazaii's translation of the "Siddhantas" into

Arabic (c. 773) the Islamic scientific world began to be

acquainted with the so-called Hindu system. This sys-

tem began to be more widely used in the Arabic world

and beyond, though the Greek system of numeration

also remained in use as well as other native systems.

This may be compared to the use of the concept of the

"void" (kenos) in Aristotle's "Physica" IV. 8.215b . See C. B.

Boyer. Zero: the symbol, the concept, the number. Nat. Mathem.

Magazine 18 (1944) pp. 323-330.
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Social factors may have played a role—the Oriental
tradition favoring the decimal place value method
against the method of the Greeks. The symbols used
to express the place value numerals show wide variations
but there are two main types: the Hindu symbols used
by the Eastern Arabs; and the so-called "gobar" (or
ghubar) numerals used in Spain among the Western
Arabs. The first symbols are still used in the Arab world
but our present numeral system seems to be derived
from the "gobar" system. There exists an already men-
tioned theory of Woepcke, according to which the
"gobar" numerals were in use in Spain when the Arabs
arrived, having reached the West through the Neo-
Pythagoreans of Alexandria as early as 450 A.D. 1

4. Mesopotamia, which under the Hellenistic and
Roman rules had become an outpost of the Roman em-
pire, reconquered its central position along the trade
routes under the Sassanians, who reigned as native Per-
sian kings over Persia in the tradition of Cyrus and
Xerxes. Little is known about this period in Persian
history, especially about its science, but the legendary
history—the Thousand and One Nights, Omar Khay-
yam, Firdawsi—confirms the meagre historical record
that the Sassanian period was an era of cultural splen-
dor. Situated between Constantinople, Alexandria,

•Comp. S. Gandz, The Origin of the Ghubar Numerals, Isis 16
( 1931 ) pp. 393-424. There exists also a theory of N. Bubnov, which
holds that the gobar forms were derived from ancient Roman-
Greek symbols used on the abacus. See also the footnote in 1'.

Cajori, History of Mathematics (New York, 1938) p. 90, as well
as Smith-Karpinski, (quoted p. 97) p. 71.
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India, and China, Sassanian Persia was a country where

many cultures met. Babylon had disappeared but was

replaced by Seleucia-Ktesiphon, which again made place

for Bagdad after the Arabic conquest of 641. This

conquest left much of ancient Persia unaffected, though

Arabic replaced Pehlevi as the official language. Even

Islam was only accepted in a modified form (Shl
c
isra)

;

Christians, Jews, and Zoroastrians continued to con-

tribute to the cultural life of the Bagdad caliphate.

The mathematics of the Islamic period shows the

same blend of influences with which we have become

familiar in Alexandria and in India
1

. The Abbasid

caliphs, notably Al-Mansur (754-775), Harun al-Rashid

(786-809), and Al-Ma'-mun (813-833) promoted astron-

omy and mathematics, Al-Ma'-mun even organizing

at Bagdad a "House of Wisdom" with a library and an

observatory. Islamic activities in the exact sciences,

which began with Al-Fazari's translation of the "Sidd-

hantas," reached its first height with a native from

Khiva, Muhammad ibn Musa al-Khwarizmi, who

flourished about 825. Muhammad wrote several books

on mathematics and astronomy. His arithmetic ex-

plained the Hindu system of numeration. Although

lost in the original Arabic, a Latin translation of the

Twelfth Century is extant. This book was one of the

means by which Western Europe became acquainted

with the decimal position. The title of the translation,

'All accounts of"Arabic"mathematics must remain tedious

repetition of second hand and third hand information as long as

only some works such as Al-Khwarizmi and Khayyam are avail-

able in translation. A history of "Arabic" mathematics by a

competent "Arabic" scholar does not exist. Suter's book was a

mere beginning.
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"Algorithmi de numero Indorum," added the term

"algorithmus"—a latinization of the author's name

—

to our mathematical language. Something similar hap-

pened to Muhammad's algebra, which had the title

" Hisab al-jabr wal-muqabala" (lit. "science of reduction

and cancellation", probably meaning "science of equa-

tions")- This algebra, of which the Arabic text is extant,

also became known in the West through Latin trans-

lations, and they made the word "al-jabr" synonymous

with the whole science of "algebra", which, indeed,

until the middle of the Nineteenth Century was nothing

but the science of equations.

This "algebra" contains a discussion of linear and

quadratic equations, but without any algebraic formal-

ism. Even the Diophantine "rhetoric" symbolism was

absent. Among these equations are the three types

characterized by x
2 + l(te = 39, x

2 + 21 = lOx, 3a: +
4 = x

2
, which had to be separately treated as long as

positive coefficients were the only ones which were

admitted. These three types reappear frequently in

later texts—" thus the equation x' + lOz = 39 runs like

a thread of gold through the algebras for several cen-

turies," writes Professor L. C. Karpinski. Much of the

reasoning is geometric. Muhammad's astronomical and

trigonometrical tables (with sines and tangents) also

belong to the Arabic works which later were translated

into Latin. His geometry is a simple catalogue of men-

suration rules; it is of some importance because it can

be directly traced to a Jewish text of 150 A.D. It shows

a definite lack of sympathy with the Euclidean tradi-

tion. Al-Khwarizml's astronomy was an abstract of the

"Siddhantas," and therefore may show some indirect
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Greek influence by way of a Sanskrit text. The works of

Al-Khwarizml as a whole seem to show Oriental rather

than Greek influence
1

, and this may have been de-

liberate.

Al-Khwarizml's work plays an important role in the

history of mathematics, for it is one of the main sources

through which Indian numerals and Arabic algebra

came to Western Europe. Algebra, until the middle of

the Nineteenth Century, revealed its Oriental origin

by its lack of an axiomatic foundation, in this respect

sharply contrasting with euclidean geometry. The
present day school algebra and geometry still preserve

these tokens of their different origin.

5. The Greek tradition was cultivated by a school of

Arabic scholars who faithfully translated the Greek
classics into Arabic—Apollonius, Archimedes, Euclid,

Ptolemy, and others. The general acceptance of the

name "Almagest" for Ptolemy's "Great Collection"

shows the influence of the Arabic translations upon the

West. This copying and translating has preserved many
a Greek classic which otherwise would have been lost.

There was a natural tendency to stress the computa-
tional and practical side of Greek mathematics at the

cost of its theoretical side. Arabic astronomy was par-

ticularly interested in trigonometry—the word "sinus"

is a Latin translation of the Arabic spelling of the

Sanscrit jyS. The sines correspond to half the chord

of the double arc (Ptolemy used the whole chord), and
were conceived as lines, not as numbers. We find a

•S. Gandz, The Sources of AUKhwdrizmVs Algebra, Osiris 1

(1936) pp. 263-277.
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good deal of trigonometry in the works of Al-Battfini

(Albategnius, bef. 858-929), one of the great Arabic

astronomers who had a table of cotangents for every

degree ("umbra extensa") as well as the cosine rule

for the spherical triangle.

This work by Al-Battani shows us that Arabic

writers not only copied but also contributed new results

through their mastery of both Greek and Oriental

methods. Abul-1-Wafa' (940-997/8) derived the sine

theorem of spherical trigonometry, computed sine

tables for intervals of 15' of which values were correct

in eight decimal places, introduced the equivalents of

secant and cosecant, and played with geometrical con-

structions using a compass of one fixed opening. He also

continued the Greek study of cubic and biquadratic

equations. Al-Karkhl (beginning of the Eleventh Cen-

tury), who wrote an elaborate algebra following Dio-

phantos, had interesting material on surds, such as the

formulas VS + VlS = V50, Vte - V2 = VT&. He

showed a definite tendency in favor of the Greeks; his

"neglect of Hindu mathematics was such that it must

have been systematic'".

6. We need not follow the many political and ethno-

logical changes in the world of Islam. They brought

ups and downs in the cultivation of astronomy and

mathematics; certain centers disappeared, others flour-

ished for a while; but the general character of the

Islamic type of science remained virtually unchanged.

We shall mention only a few highlights.

About 1000 B.C. new rulers appeared in Northern

>G. Sarton, Introduction to the History of Science I, p. 719.

8
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Persia, the Saljuq (Selchuk) Turks, whose empire flour-

ished around the irrigation center of Merv. Here lived
Omar Khayyam (c. 1038/48-1123/24), known in the
West as the author of the "Rubaiyat" (in the Fitz-

gerald translation, 1859) ; he was an astrononer and a
philosopher:

"Ah, but my Computations, People say,

Have squared the Year to human Compass, eh?
If so, by striking from the Calendar
Unborn tomorrow, and dead Yesterday". (LIX)

Here Omar may have referred to his reform of the
old Persian calendar, which instituted an error of one
day in 5000 years (1540 or 3770 years according to
different interpretations), whereas our present Greg-
orian calendar has an error of one day in 3330 years.
His reform was introduced in 1079 but was later re-

placed by the Muslim lunar calendar. Omar wrote an
"Algebra," which represented a considerable achieve-
ment, since it contained a systematic investigation of
cubic equations. Using a method occasionally used by
the Greeks, he determined the roots of these equations
as intersection of two conic sections. He had no numer-
ical solutions and discriminated—also in Greek style-
between "geometrical" and "arithmetical" solutions,

the latter existing only if the roots are positive rational.

This approach was therefore entirely different from that
of the Sixteenth Century Bolognese mathematicians,
who used purely algebraical methods.

After the sack of Bagdad in 1256 by the Mongols a
new center of learning sprang up near the same place
at the observatory of Maragha, built by the Mongol
ruler Hulagu for Naslr al-dln (Nasir-eddin, 1201-1274).
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Here again arose an institute where the whole of Ori-

ental science could be pooled and matched with the

Greek. Nasir separated trigonometry as a special

science from astrononrv ; his attempts to "prove"

Euclid's parallel axiom show that he appreciated the

theoretical approach of the Greeks. Nasir's influence

was widely felt later in Renaissance Europe; as late

as 1651 and 1663 John Wallis used Nasir's work on

the Euclidean postulate.

An important figure in Egypt was Ibn Al-Haitham

(Alhazen, c. 965-1039), the greatest Muslim physicist,

whose "Optics" had a great influence on the West. He

solved the "problem of Alhazen," in which we are asked

to draw from two points on the plane of a circle lines

meeting at the point of the circumference and making

equal angles with the normal at that point. This prob-

lem leads to a biquadratic equation and was solved in

the Greek way by a hyperbola meeting a circle. Alhazen

also used the exhaustion method to compute the vol-

umes of figures obtained by revolving a parabola about

any diameter or ordinate. One hundred years before

Alhazen there lived in Egypt the algebrist Abu Kamil,

who followed and extended the work of Al-KhwarizmT.

He influenced not only Al-Karkhl, but also Leonardo

of Pisa.

Another center of learning existed in Spain. One of

the important astronomers at Cardoba was Al-Zarqali,

(Arzachel, c. 1029-c. 1087), the best observer of his

time and the editor of the so-called Tolcdan planetary

tables. The trigonometrical tables of this work, which

was translated into Latin, had some influence on the

development of trigonometry in the Renaissance.
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In China we must mention Tsu Ch'ung Chi (430-501)
who found for *• the value 355/113; the mathema-
ticians and astrononers of the T'ang dynasty (610-907)
who compiled the "Ten Classics"; and Ch'in Chiu-
Shao (Thirteenth Century) who gave numerical solu-
tions of equations of higher degree. Ch'in's solution of
the equation

:

x* - 763200 x
a + 40642560000 =

followed a method similar to that which we now know
as Horner's.

Some of these achievements are not without interest,

but they show no essential progress beyond the limits
set by the Greeks and the Babylonians. The same holds
for Japanese mathematics, about which information
begins to reach us from the Twelfth Century on. All
this work in mathematics remained at best semi-stag-
nating. We lose interest in it when in the Sixteenth
Century a new type of mathematics began to nourish
in the West.'
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CHAPTER V

The Beginnings in Western Europe

1. The most advanced section of the Roman Empire
from both an economic and a cultural point of view
had always been the East. The Western part had never
been based on an irrigation economy; its agriculture
was of the extensive kind which did not stimulate the
study of astronomy. Actually the West managed very
well in its own way with a minimum of astronomy,
some practical arithmetics, and some mensuration for
commerce and surveying; but the stimulus to promote
these sciences came from the East. When East and
West separated politically this stimulation almost dis-

appeared. The static civilization of the Western Roman
Empire continued with little interruption or variation
for many centuries; the Mediterranean unity of antique
civilization also remained unchanged—and was not even
very much affected by the barbaric conquests. In all

Germanic kingdoms, except perhaps those of Britain,
the economic conditions, the social institutions, and
the intellectual life remained fundamentally what they
had been in the declining Roman Empire. The basis of
economic life was agriculture, with slaves gradually
replaced by free and tenant farmers; but in addition
there were prosperous cities and a large-scale commerce
with a money economy. The central authority in the
Greek-Roman world after the fall of the Western Em-
pire in 476 was shared by the emperor in Constantinople
and the popes of Rome. The Catholic Church of the
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West through its institutions and language continued as

best it could the cultural tradition of the Roman

Empire among Germanic kingdoms. Monasteries and

cultured laymen kept some of the Greek-Roman civili-

zation alive.

One of these laymen, the diplomat and philosopher

Anicius Manilius Severinus Boetius, wrote mathemat-

ical texts which were considered authoritative in the

Western world for more than a thousand years. They

reflect the cultural conditions, for they are poor in con-

tent and their very survival may have been influenced

by the belief that the author died in 524 as a martyr to

the Catholic faith. His"Institutio arithmetica," a super-

ficial translation of Nicomachus, did provide some

Pythagorean number theory which was absorbed in

medieval instruction as part of the ancient trivium and

quadrivium: arithmetic, geometry, astronomy, and

music.

It is difficult to establish the period in the West in

which the economy of the ancient Roman Empire dis-

appeared to make room for a new feudal order. Some

light on this question is shed by the hypothesis of II.

Pirenne
1

,
according to which the end of the ancient

Western world came with the expansion of Islam. The

Arabs dispossessed the Byzantine Empire of all its

provinces on the Eastern and Southern shores of the

Mediterranean and made the Eastern Mediterranean a

closed Muslim lake. They made commercial relations

between the Near Orient and the Christian Occident

extremely difficult for several centuries. The intellectual

avenue between the Arabic world and the Northern

'H. Pirenne, Mahomet and Charlemagne (London, 1939).
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parts of the former Roman Empire, though never

wholly closed, was obstructed for centuries.

Then in Frankish Gaul and other former parts of the

Roman Empire large-scale economy subsequently van-
ished; decadence overtook the cities; returns from tolls

became insignificant. Money economy was replaced by
barter and local marketing. Western Europe was re-

duced to a state of semi-barbarism. The landed aris-

tocracy rose in significance with the decline of com-
merce; the North Frankish landlords, headed by the

Carolingians, became the ruling power in the land of

the Franks. The economic and cultural center moved to

the North, to Northern France and Britain. The sepa-

ration of East and West limited the effective authority

of the pope to the extent that the papacy allied itself

with the Carolingians, a move symbolized by the crown-

ing of Charlemagne in 800 as Emperor of the Holy
Roman Empire. Western society became feudal and
ecclesiastical, its orientation Northern and Germanic.

2. During the early centuries of Western feudalism
we find little appreciation of mathematics even in the

monasteries. In the again primitive agricultural society

of this period the factors stimulating mathematics, even
of a directly practical kind, were nearly nonexistent;

and monasteric mathematics was no more than some
ecclesiastical arithmetic used mainly for the computa-
tion of Easter-time (the so-called " computus") . Boet ius

was the highest source of authority. Of some importance
among these ecclesiastical mathematicians was the
British born Alcuin, associated with the court of Char-
lemagne, whose Latin "Problems for the Quickening
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of the Mind" (see p. 86) contained a selection which

have influenced the writers of text books for many cen-

turies. Many of these problems date back to the

ancient Orient. For example:

"A dog chasing a rabbit, which has a start of 150 feet, jumps

9 feet every time the rabbit jumps 7. In how many leaps does the

dog overtake the rabbit?"

"A wolf, a goat, and a cabbage must be moved across a river

in a boat holding only one beside the ferry man. How must he

carry them across so that the goat shall not eat the cabbage,

nor the wolf the goat?"

Another ecclesiastical mathematician was Gerbert,

a French monk, who in 999 became pope under the

name of Sylvester II. He wrote some treatises under

the influence of Boetius, but his chief importance as a

mathematician lies in the fact that he was one of the

first Western scholars who went to Spain and made

studies of the mathematics of the Arabic world.

3. There are significant differences between the de-

velopment of Western, of early Greek, and of Oriental

feudalism. The extensive character of Western agri-

culture made a vast system of bureaucratic admin-

istrators superfluous, so that it could not supply a basis

for an eventual Oriental despotism. There was no pos-

sibility in the West nf obtaining vast supplies of slaves.

When villages in Western Europe grew into towns these

towns developed into self-governing units, in which the

burghers were unable to establish a life of leisure based

on slavery. This is one of the main reasons why the

development of the Greek polis and the Western city,

which during the early stages had much in common,
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deviated sharply in later periods. The medieval towns-
people had to rely on their own inventive genius to
improve their standard of living. Fighting a bitter

struggle against the feudal landlords—and with much
civil strife in addition—they emerged victorious in the
Twelfth, Thirteenth, and Fourteenth Centuries. This
triumph was based not only on a rapid expansion of
trade and money economy but also on a gradual im-
provement in technology. The feudal princes often sup-
ported the cities in their fight against the smaller
landlords, and then eventually extended their rule over
the cities. This finally led to the emergence of the
first national states in Western Europe.
The cities began to establish commercial relations

with the Orient, which was still the center of civilization.

Sometimes these relations were established in a peace-
ful way, sometimes by violent means as in the many
Crusades. First to establish mercantile relations were
the Italian cities; they were followed by those of France
and Central Europe. Scholars followed, or sometimes
preceded, the merchant and the soldier. Spain and
Sicily were the nearest points of contact between East
and West, and there Western merchants and students
became acquainted with Islamic civilization. When in

1085 Toledo was taken from the Moors by the Chris-
tians, Western students flocked to this city to learn the
science of the Arabs. They often employed Jewish in-

terpreters to converse and to translate, and so we find
in Twelfth Century Spain Plato of Tivoli, Gherardo of
Cremona, Adelard of Bath, and Robert of Chester,
translatingArabic mathematical manuscripts into Latin.
Thus Europe became familiar with Greek classics
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through the Arabic; and by this time Western Europe

was advanced enough to appreciate this knowledge.

4. As we have said, the first powerful commercial

cities arose in Italy, where during the Twelfth and

Thirteenth Centuries Genoa, Pisa, Venice, Milan, and

Florence carried on a flourishing trade between the

Arabic world and the North. Italian merchants visited

the Orient and studied its civilization; Marco Polo's

travels show the intrepidity of these adventurers. Like

the Ionian merchants of almost two thousand years

before, they tried to study the science and the arts

of the older civilization not only to reproduce them,

but also to put them to use in their own new and

experimental system of merchant capitalism. The first

of these merchants whose mathematical studies show

a certain maturity was Leonardo of Pisa.

Leonardo, also called Fibonacci ("son of Bonaccio"),

travelled in the Orient as a merchant. On his return he

wrote his "Liber Abaci" (1202), filled with arithmetical

and algebraical information which he had collected on

his travels. In the "Practica Geometriae" (1220) Leo-

nardo described in a similar way whatever he had dis-

covered in geometry and trigonometry. He may have

been an original investigator as well, since his books

contain many examples which seem to have no exact

duplicates in Arabic literature 1
. However he does quote

Al-Khwarizmi, as for instance in the discussion of the

equation x
a + 10s = 39. The problem which leads to

•L C Karpinski, Amer. Math. Monthly 21 (1914) pp. 37-48,

using the Paris manuscript of Abu Kamil's algebra, claims that

Leonardo followed Abu Kamil in a whole series of problems.
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the "series of Fibonacci" 0,1,1,2,3,5,8,13,21, • •
, of

which each term is the sum of the two preceding terms,
seems to be new and also his remarkably mature proof
that the roots of the equation x3 + 2x

2 + 10a; = 20
cannot be expressed by means of Euclidean irration-

alities Va + Vb (hence cannot be constructed by
means of compasses and ruler only). Leonardo proved
it by checking upon each of Euclid's fifteen cases, and
then solved the positive root of this equation approxi-
mately, finding six sexagesimal places.

The series of Fibonacci resulted from the problem:

How many pairs of rabbits can be produced from a single pair
in a year if (a) each pair begets a new pair every month, which
from the second month on becomes productive, (b) deaths do not
occur?

The "Liber Abaci" is one of the means by which the
Hindu-Arabic system of numeration was introduced
into Western Europe. Their occasional use dates back to
centuries before Leonardo, when they wore imported
by merchants, ambassadors, scholars, pilgrims, and
soldiers coming from Spain and from the Levant. The
oldest dated European manuscript containing the nu-
merals is the "Codex Yigilanus," written in Spain in

976. However, the introduction of the ten symbols
into Western Europe was slow; the earliest French
manuscript in which they are found dates from 1275.
The Greek system of numeration remained in vogue
along the Adriatic for many centuries. Computation
was often performed on the ancient abacus, a board
with counters or pebbles (often simply consisting of
lines drawn in sand) similar in principle to the counting
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boards still used by the Russians, Chinese, Japanese,

and by children on their baby-pens. Roman numerals

were used to registrate the result of a computation on

the abacus. Throughout the Middle Ages and even

later we find Roman numerals in merchant's ledgers,

which indicates that the abacus was used in the offices.

The introduction of Hindu-Arabic numerals met with

opposition from the public, since the use of these

symbols made merchant's books difficult to read. In

the statutes of the "Arte del Cambio" of 1299 the

bankers of Florence were forbidden to use Arabic nu-

merals and were obliged to use cursive Roman ones.

Sometime during the Fourteenth Century Italian mer-

chants began to use some Arabic figures in their account

books.
1

5. With the extension of trade interest in mathe-

matics spread slowly to the Northern cities. It was at

first mainly a practical interest, and for several centuries

arithmetic and algebra were taught outside the uni-

versities by self-made reckon masters, usually ignorant

•In the Medici account books (dating from 1406) of the Scl-

fridge collection on deposit at the Harvard Graduate School of

Business Administration, Hindu-Arabic numerals frequently ap-

pear in the narrative or descriptive column. From 1439 onward

they replace Roman numerals in the money or effective column

of the books of primary entry: journals, wastebooks, etc., but

not until 1482 were Roman numerals abandoned in the money

column of the business ledgers of all but one Medici merchant.

From 1494, only Hindu-Arabic numerals arc used in all the

Medici account books. (From a letter by Dr. Florence Edler De

Hoover.) See also, F. Edler, Glossary of Medieval Terms of

Business (Cambridge, Mass., 1934) p. 389.
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of the classics, who also taught bookkeeping and navi-
gation. For a long time this type of mathematics kept
definite traces of its Arabic origin, as words such as
"algebra" and "algorithm" testify.

Speculative mathematics did not entirely die during
the Middle Ages, though it was cultivated not among
the men of practice, but among the scholastic philoso-
phers. Here the study of Plato and Aristotle, com-
bined with meditations on the nature of the Deity,
led to subtle speculations on the nature of motion, of
the continuum and of infinity. Origen had followed
Aristotle in denying the existence of the actually infin-

ite, but St. Augustine in the "Civitas Dei" had accepted
the whole sequence of integers as an actual infinity. His
words were so well chosen that Georg Cantor has re-

marked that the transfinitum cannot be more ener-
getically desired and cannot be more perfectly deter-
mined and defended than was done by St. Augustine'.
The scholastic writers of the Middle Ages, especially
St, Thomas Aquinas, accepted Aristotle's "infinitum
actu non datur,"* but considered every continuum as
potentially divisible ad infinitum. Thus there was no
smallest line, since every part of the fine had the prop-
erties of the line. A point, therefore, was not a part of
a line, because it was indivisible: "ex indivisilibus non

• 'G. Cantor, Lelter to Eulenburg (1886), Ges. Abhandlungen
(Berlin, 1932) pp. 401-402. The passage quoted by Cantor, Ch.
XVIII of Book XII of "The City of God" (in the Healey trans-
lation) is entitled "Against such as say that things infinite are
above God's knowledge."

'"There is no actually infinite."
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potest compari aliquod continuum"
1

. A point could

generate a line by motion. Such speculations had their

influence on the inventors of the infinitesimal calculus

in the Seventeenth Century and on the philosophers of

the transfinite in the Nineteenth; Cavalieri, Tacquet,

Bolzano and Cantor knew the scholastic authors and

pondered over the meaning of their ideas.

These churchmen occasionally reached results of more

immediate mathematical interest. Thomas Bradwar-

dine, who became Archbishop of Canterbury, investi-

gated star polygons after studying Boetius. The most

important of these medieval clerical mathematicians

was Nicole Oresme, Bishop of Lisieux in Normandy,

who played with fractional powers. Since 4
3 = 64 = 8

a

,

he wrote 8 as •i 4 or
1.2

4, meaning 4
1
'. He also

wrote a tract called "De latitudinibus formarum" (c.

1360), in which he graphs a dependent variable (lati-

tudo) against an independent one (longitudo), which

is subjected to variation. It shows a kind of vague

transition from coordinates on the terrestrial or celes-

tial sphere, known to the Ancients, to modern co-

ordinate geometry. This tract was printed several times

between 1482 and 1515 and may have influenced Ren-

aissance mathematicians, including Descartes.

6. The main line of mathematical advance passed

through the growing mercantile cities under the direct

l"A continuum cannot consist of indivisibles."
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influence of trade, navigation, astronomy, and survey-

ing. The townspeople were interested in counting, in

arithmetic, in computation. Sombart had labeled this

interest of the Fifteenth and Sixteenth century burgher

his "Rechenhaftigkcit"
1

. Leaders in the love for prac-

tical mathematics were the reckon masters, only very

occasionally joined by a university man, able, through

his study of astronomy, to understand the importance

of improving computational methods. Centers of the

new life were the Italian cities and the Central European
cities of Nuremberg, Vienna, and Prague. The fall of

Constantinople in 1453, which ended the Byzantine

Empire, led many Greek scholars to the Western cities.

Interest in the original Greek texts increased, and it

became easier to satisfy this interest. University pro-

fessors joined with cultured laymen in studying the

texts, ambitious reckon masters listened and tried to

understand the new knowledge in their own way.

Typical of this period was Johannes Muller of Konigs-

berg, or Regiomontanus, the leading mathematical

figure of the Fifteenth Century. The activity of this

remarkable computer, instrument maker, printer, and

scientist illustrates the advances made in European

mathematics during the two centuries after Leonardo.

He was active in translating and publishing the classical

mathematical manuscripts available. His teacher,

the Viennese astronomer, George Peurbach—author

of astronomical and trigonometrical tables—had al-

ready begun a translation of the astronomy of Ptolemy

'W. Somlnirl. Der BourgeoU (Munich. Leipzig, 1913). p. 164.

The term "Rcchcnhoftigkeit" indicates a willingness to compute,

:\ In liefin the iiscl'iilncssofuritliiiicticul work. (Also London, 1915.)
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from the Greek. Regiomontanus continued this trans-

lation and also translated Apollonios, Heron, and the

most difficult of all, Archimedes. His main original work

was "De triangulis omnimodus" (1464, not printed

until 1533), a complete introduction into trigonometry,

differing from our present-day texts primarily in the

fact that our convenient notation did not exist. It con-

tains the law of sines in a spherical t riangle. All theorems

had still to be expressed in words. Trigonometry, from

now on, became a science independent of astronomy.

Nasir al-dln had accomplished something similar in the

Thirteenth Century, but it is significant that his work

never resulted in much further progress, whereas Regio-

montanus' book deeply influenced further development

of trigonometry and its application to astronomy and

algebra. Regiomontanus also devoted much effort to

the computation of trigonometric tables. He has a table

of sines to radius G0.000 for intervals of one minute

(publ. 1490).

7. So far no definite step had been taken beyond

the ancient achievements of the Greeks and Arabs. The

classics remained the nee plus ultra of science. It came

t horefore as an enormous and exhilarating surprise when

Italian mathematicians of the early Sixteenth Century

actually showed that it was possible to develop a new

mathematical theory which the Ancients and Arabs

had missed. This theory, which led to the general

algebraic solution of the cubic equation, was discovered

by Scipio Del Ferro and his pupils at the University of

Bologna.

The Italian cities had continued to show proficiency

9



110 A CONCISE HISTORY OF MATHEMATICS

in mathematics after the time of Leonardo. In the

Fifteenth Century their reckon masters were well versed

in arithmetical operations, including surds (without

having any geometrical scruples) and their painters

were good geometers. Vasari in his "Lives of the

Painters" stresses the considerable interest which many
quattrocento artists showed in solid geometry. One of

their achievements was the development of perspective

by such men as Alberti and Pier Delia Francesca;

the latter also wrote a volume on regular solids. The
reckon masters found their interpreter in the Franciscan

monk Luca Pacioli, whose "Summa de Arithmetica"

was printed in 1494—one of the first mathematical

books to be printed
1

. Written in Italian—and not a very

pleasant Italian—it contained all that was known in

that day of arithmetic, algebra, and trigonometry. By
now the use of Hindu-Arabic numerals was well estab-

lished, and the arithmetical notation did not greatly

differ from ours. Pacioli ended his book with the remark
that the solution of the equations i

3 + mx = n, x
3 +

n = mx was as impossible at the present state of science

as the quadrature of the circle.

At this point began the work of the mathematicians

at the University of Bologna. This university, around
the turn of the Fifteenth Century, was one of the largest

and most famous in Europe. Its faculty of astronomy
alone at one time had sixteen lectors. From all parts of

Europe students flocked to listen to the lectures—and
to the public disputations which also attracted the

'The first printed mathematical books were a commercial
arithmetic (Treviso, 1478) and a Latin edition of Euclid's Ele-

ments (Venice, Ratdolt, 1482).

uj
w
S

o
z
S
a
5
u,

o
w
•x

a
a
a
z

w
s

X
f-

»—

I

o
o

O
P
-



112 A CONCISE HISTORY OF MATHEMATICS

attention of large, sportively-minded crowds. Among
the students at one time or another were Pacioli,

Albrecht Diirer, and Copernicus. Characteristic of the

new age was the desire not only to absorb classical

information but also to create new things, to penetrate

beyond the boundaries set by the classics. The art of

printing and the discovery of America were examples

of such possibilities. Was it possible to create new
mathematics? Greeks and Orientals had tried their

ingenuity on the solution of the third degree equation

but had only solved some special cases numerically.

The Bolognese mathematicians now tried to find the

general solution.

These cubic equations could all be reduced, to three

types:

x
3 + px = q, x

3 = px + q, x* + q = px,

where p and q were positive numbers. They were spe-

cially investigated by Professor Scipio Del Ferro, who
died in 1526. It may be taken on the authority of E.

Bortolotti 1
, that Del Ferro actually solved all types.

He never published his solutions and only told a few

friends about them. Nevertheless, word of the discovery

became known and after Scipio's death a Venetian

reckon master, nicknamed Tartaglia ("The Stam-
merer"), rediscovered his methods (1535). He showed
his results in a public demonstration, but again kept

the method by which he had obtained them a secret.

Finally he revealed his ideas to a learned Milanese

doctor, Hieronimo Cardano, who had to swear that he

•E. Bortolotti, L'algebra nella scuola matematica bolognese del

secolo XVI, Periodico di Matematica (4) 5 (1925) pp. 147-184.
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would keep them » secret. But when Cardano in 1545

published his stately book on algebra, the " Ars magna,"

Tartaglia discovered to his disgust that the method

was fully disclosed in the book, with due acknowledge-

ment to the discoverer, but stolen just the same. A bitter

debate ensued, with insults hurled both ways, in which

Cardano was defended by a younger gentleman scholar,

Ludovico Ferrari. Out of this war came some interesting

documents, among them the "Quaesiti" of Tartaglia

(1546) and the "Cartelli" of Ferrari (1547-48), from

which the whole history of this spectacular discovery

became public knowledge.

The solution is now known as the Cardano solution,

which for the case x
3 + px = q takes the form

x =m+^+ 3_ v« + 9l_2

We see that this solution introduced quantities of

the form V a + Vb, different from the Euclidean

Va+ Vb.

Cardano's "Ars Magna" contained another brilliant

discovery: Ferrari's method of reducing the solution

of the general biquadratic equation to that of a cubic

equation. Ferrari's equation was x* + 6x
a + 36 = 60ar,

which he reduced to y
3 + I5if + 36# = 450. Cardano

also considered negative numbers, calling them "fic-

titious," but was unable to do anything with the so-

ealled "irreducible case" of the cubic equation in which

there arc three real solutions appearing as the sum or

difference of what we now call imaginary numbers.

This difficulty was solved by the last of the great
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Sixteenth Century Bolognese mathematicians, Raffael

Bombelli, whose "Algebra" appeared in 1572. In this

book—and in a geometry written around 1550 which

remained in manuscript—he introduced a consistent

theory o f imaginary complex numbers. He wrote 3i as

y/0 — 9 (lit : R[0 m. 9], R for radix, m for meno).

This allowed Bombelli to solve the irreducible case by

showing, for instance, that

^52 + V0- 2209 = 4 + V0 - 1.

Bombelli 's book was widely read; Leibniz selected it for

the study of cubic equations, and Euler quotes Bombelli

in his own "Algebra" in the chapter on biquadratic

equations. Complex numbers, from now on, lost some

of their supernatural character, though full acceptance

came only in the Nineteenth Century.

It is a curious fact that the first introduction of the

iniaginaries occurred in the theory of cubic equations,

in the case where it was clear that real solutions exist

though in an unrecognizable form, and not in the

theory of quadratic equations, where our present text-

books introduce them.

8. Algebra and computational arithmetic remained

for many decades the favorite subject of mathematical

experimentation. Stimulation no longer came only from

the " Rechenhaftigkeit" of the mercantile bourgeoisie

but also from the demands made on surveying and

navigation by the leaders of the new national states.

Engineers were needed for the erection of public works

and for military constructions. Astronomy remained,

as in all previous periods, an important domain for

mathematical studies. It was the period of the great

astronomical theories of Copernicus, Tycho Brahe, and

Kepler. A new conception of the universe emerged.

Philosophical thought reflected the trends in scientific

thinking; Plato with his admiration for quantitative

mathematical reasoning gained ascendancy over Aris-

totle. Platonic influence is particularly evident in Kep-

ler's work. Trigonometrical and astronomical tables ap-

peared with increasing accuracy, especially in Germany.

The tables of G. J. Rheticus, finished in 1596 by his

pupil Valentin Otho, contain the values of all six trigo-

nometric values for every ten seconds to ten places.

The tables of Pitiscus (1613) went up to fifteen places.

The technique of solving equations and the under-

standing of the nature of their roots also improved.

The public challenge, made in 1593 by the Belgian

mathematician Adriaen Van Roomen, to solve the equa-

tion of the 45th degree

x" - 45x" + 945s
41 - 12300x

3B

+ • • • - 3795a;
8 + 45x = A,

was characteristic of the times. Van Roomen proposed

special cases, e.g. A = -^2 + "^2 + -^2^2' which

gives x =y2 - V2 + ^2 + "V2 + >|3'
which cases

were suggested by consideration of regular polygons.

Francois Viete, a French lawyer attached to the court

of Henry IV, solved Van Roomen's problem by observ-

ing that the left hand member was equivalent to the

expression of sin
<f>

in terms of sin <£/45. The solution

could therefore be found with the aid of tables. Viete



116 A CONCISE HISTORY OF MATHEMATICS

found twenty-three solutions of the form sin (0/45 —

n.8°), discarding negative roots. Viete also reduced

Cardano's solution of the cubic equation to a trigono-

metric one, in which process the irreducible case lost

its horrors by avoiding the introduction of -\/0 — a.

This solution can now be found in the textbooks of

higher algebra.

Vifete's main achievements were in the improve-

ment of the theory of equations (e.g. " In artem analyti-

cam isagoge", 1591), where he was among the first

to represent numbers by letters. The use of numerical

coefficients, even in the "rhetoric" algebra of the Dio-

phantine school, had impeded the general discussion of

algebraic problems. The work of the Sixteenth Century

algebrists (the " Cossists," after the Italian word " cosa"

for the unknown) was produced in a rather complicated

notation. Hut in Viete's "logistica speciosa" at least a

general symbolism appeared, in which lettere were used

to express numerical coefficients, the signs + and —

were used in our present meaning and "A quadratum"

was written for A'. This algebra still differed from ours

in Viete's insistence on the Greek principle of homo-

geneity, in which a product of two line segments was

necessarily conceived as an area; line segments could

therefore only be added to line segments, areas to areas,

and volumes to volumes. There was even some doubt

whether equations of degree higher than three actually

had a meaning, since they could only be interpreted

in four dimensions, a conception hard to understand in

those days.

This was the period in which computational tech-

nique reached new heights. Viete improved on Archi-

Courtesy of Scripts Malhematica

FRANCOIS VIETE (1540-1603)
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medes and found v in nine decimals; shortly afterwards

r was computed in thirty-five decimals by Ludolph
Van Coolen, a fencing master at Delft who used in-

scribed and circumscribed regular polygons with more
and more sides. Viete also expressed t as an infinite

product (1593, in our notation):

? = cos | cos | cos ^ cos ^ .. -

The improvement in technique was a result of the

improvement in notation. The new results show clearly

that it is incorrect to say that men like Viete "merely"
improved notation. Such a statement discards the pro-
found relation between content and form. New results

have often become possible only because of a new mode
of writing. The introduction of Hindu-Arabic numerals
is one example; Leibniz' notation for the calculus is

another one. An adequate notation reflects reality better

than a poor one, and as such appears endowed with a
life of its own which in turn creates new life. Viete's

improvement in notation was followed, a generation
later, by Descartes' application of algebra to geometry.

9. Engineers and arithmeticians were in particular

demand in the new commercial states, especially France,

England, and the Netherlands. Astronomy flourished

over all Europe. Although the Italian cities were no
longer on the main road to the Orient after the discovery

of the sea route to India, they still remained centers of

importance. And so we find among the great mathema-
ticians and computers of the early Seventeenth Century
Simon Stevin, an engineer, Johann Kepler, an astrono-
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mcr, and Adriaan Vlacq and Ezechiel De Decker,

surveyors.

Stevin, a bookkeeper of Bruges, became an engineer

in the army of Prince Maurice of Orange, who appreci-

ated the way Stevin combined practical sense with theo-

retical understanding and originality. In "La disme"

(1585) he introduced decimal fractions as part of a proj-

ect to unify the whole system of measurements on a

decimal base. It was one of the great improvements

made possible by the general introduction of the Hindu-

Arabic system of numeration.

The other great computational improvement was the

invention of logarithms. Several mathematicians of the

Sixteenth Century had been playing with the possi-

bility of coordinating arithmetical and geometrical pro-

gressions, mainly in order to ease the work with the

complicated trigonometrical tables. An important con-

tribution toward this end was undertaken by a Scottish

laird, John Neper (or Napier), who in 1614 published

his "Mirifici logarithmorum canonis descriptio." His

central idea was to construct two sequences of numbers

so related that when one increases in arithmetical pro-

gression, the other decreases in a geometrical one. Then

the product of two numbers in the second sequence has

a simple relation to the sum of corresponding numbers

in the first, and multiplication could be reduced to

addition. With this system Neper could considerably

facilitate computational work with sines. Neper's early

attempt was rather clumsy, since his two sequences

correspond according to the modern formula

y = a e'" (or x = Nep. log y)
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in which a = 10
7

.

1 When x — *i + x2 ,
we do not get

y = 2/i!/2. hut y = yij/i/a. This system did not satisfy

Neper himself, as he told his admirer Henry Briggs, a

professor at Gresham College, London. They decided on

the function y = 10
r
, for which x = x, + x2 actually

yields y = j/i2/j- Briggs, after Neper's death, carried

out this suggestion and in 1624 published his "Arith-

metica logarithmica" which contained the "Briggian"

logarithms in 14 places for the integers from 1 to 20.000

and from 90.000 to 100.000. The gap between 20.000

and 90.000 was filled by Ezechiel De Decker, a Dutch

surveyor, who assisted by Vlacq, published at Gouda in

1627 a complete table of logarithms. The new invention

was immediately welcomed by the mathematicians and

astronomers, and particularly by Kepler, who had had a

longand painful experience with elaborate computations.

Our explanation of logarithms by exponentials is his-

torically somewhat misleading, since the conception of

an exponential function dates only from the later part

of the Seventeenth Century. Neper had no notion of a

base. Natural logarithms, based on the function y = e
x

,

appeared almost contemporaneously with the Briggian

logarithms, but their fundamental importance was not

recognized until the infinitesimal calculus was better

understood
2

.

'Hence Nep. log y = 10' (In 107 - In y) = 161180957

- 10' In y; and Nep\ log 1 = 161180957; In x stands for our

natural logarithm.

•E. Wright published some natural logarithms in 1618, J.

Speidel in 1619, but after this no tables of these logarithms were

published until 1770. See F. Cajori, History of the Exponential

and Logarithmic Concepts, American Math. Monthly 20 (1913).
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The Seventeenth Century

1. The rapid development of mathematics during the

Renaissance was due not only to the" Rechenhaftigkeit"

of the commercial classes but also to the productive use

and further perfection of machines. Machines were

known to the Orient and to classical antiquity; they had

inspired the genius of Archimedes. However, the exist-

ence of slavery and the absence of economically pro-

gressive urban life frustrated the use of machines in

these older forms of society. This is indicated by the

works of Heron, where machines are described.but only

for the purpose of amusement or deception.

In the later Middle Ages machines came in use in

small manufactures, in public works, and in mining.

These were enterprises undertaken by city merchants

or by princes in search of ready money and often con-

ducted in opposition to the city guilds. Warfare and

navigation also stimulated the perfection of tools and

their further replacement by machines.

A well-established silk industry existed in Lucca and

in Venice as early as the Fourteenth Century. It was

based on division of labor and on the use of water power.

In the Fifteenth Century mining in Central Europe

developed into a completely capitalistic industry based

technically on the use of pumps and hoisting machines

which allowed the boring of deeper and deeper layers.

The invention of firearms, and of printing, the con-

struction of windmills and canals, the building of ships

10 12S
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to sail the ocean, required engineering skill and made
people technically conscious. The perfection of clocks,

useful for astronomy and navigation and often installed

in public places, brought admirable pieces of mechan-
ism before the public eye; the regularity of their motion
and the possibility they offered of indicating time ex-

actly made a deep impression upon the philosophical

mind. During the Renaissance and even centuries later

the clock was taken as a model of the universe. This was
an important factor in the development of the mechan-
ical conception of the world.

Machines led to theoretical mechanics and to the

scientific study of motion and of change in general.

Antiquity had already produced texts on statics, and
the new study of theoretical mechanics naturally based

itself upon the statics of the classical authors. Books
on machines appeared long before the invention of

printing, first empirical descriptions (Kyeser, early Fif-

teenth Century), later more theoretical ones, such as

Leon Battista Alberti's book on architecture (c. 1450)

and the writings of Leonardo Da Vinci (c. 1500).

Leonardo's manuscripts contain the beginnings of a

definite mechanistic theory of nature. Tartaglia in his

"Nuova scienzia" (1537) discussed the construction of

clocks and the orbit of projectiles—but had not yet
found the parabolic orbit, first discovered by Galileo.

The publication of Latin editions of Heron and Archi-

medes stimulated this kind of research, especially F.

Commandino's edition of Archimedes, which appeared
in 1558 and brought the ancient method of integration

within the reach of the mathematicians. Commandino
himself applied these methods to the computation of

centers of gravity (1565), though with less rigor than

his master.

This computation of centers of gravity remained a

favorite topic of Archimedian scholars, who used their

study of statics to obtain a working knowledge of the

rudiments of what we now recognize as the calculus.

Outstanding among such students of Archimedes is

Simon Stevin who wrote on centers of gravity and on

hydraulics both in 1586, Luca Valerio who wrote on

centers of gravity in 1604 and on the quadrature of the

parabola in 1606, and Paul Guldin in whose "Centro-

baryca" (1641) we find the so-called theorem of Guldin

on centroids, already explained by Pappus. In the wake

of the early pioneers came the great works of Kepler,

Cavalieri, and Torricelli, in which they evolved methods

which eventually led to the invention of the calculus.

2. Typical of these authors was their willingness to

abandon Archimedian rigor for considerations often

based on non-rigorous, sometimes "atomic," assump-

tions—probably without knowing that Archimedes, in

his letter to Eratosthenes, had also used such methods

for their heuristic value. This was partly due to im-

patience with scholasticism among some, though not

all, of these authors, since several of the pioneers were

Catholic priests trained in scholasticism. The main
reason was the desire for results, which the Greek

method was unable to provide quickly.

The revolution in astronomy, connected with the

names of Copernicus, Tycho Brahe, and Kepler, opened

entirely new visions of man's place in the universe and

man's power to explain the phenomena of astronomy
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JOHANN KEPLER (1571-1630)
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in a rationalistic way. The possibility of a celestial

mechanics to supplement terrestrial mechanics increased

the boldness of the men of science. In the works of

Johann Kepler the stimulating influence of the new

astronomy on problems involving large computations

as well as infinitesimal considerations is particularly

evident. Kepler even ventured into volume computa-

tion for its own sake, and in his " Stereometria doliorum

vinorum" ("Solid geometry of wine barrels", 1615)

evaluated the volumes of solids obtained by rotating

segments of conic sections about an axis in their plane.

He broke with Archimedian rigor; his circle area was

composed of an infinity of triangles with common vertex

at the center; his sphere consisted of an infinity of

pointed pyramids. The proofs of Archimedes, Kepler

said, were absolutely rigorous, "absolutae et omnibus

numeris perfectae"
1

, but he left them to the people who

wished to indulge in exact demonstrations. Each suc-

cessive author was free to find his own kind of rigor, or

lack of rigor, for himself.

To Galileo Galilei we owe the new mechanics of

freely falling bodies, the beginning of the theory of

elasticity, and a spirited defense of the Copernican

system. Above all we owe to Galileo, more than to any

other man of his period, the spirit of modern science

based on the harmony of experiment and theory. In

the "Discorsi" (1638) Galileo was led to the mathe-

matical study of motion, to the relation between dis-

tance, velocity, and acceleration. He never gave a

systematic explanation of his ideas on the calculus,

leaving this to his pupils Torricelli and Cavalieri. Indeed,

"'abaolute and in all respecte perfect"
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Galileo's ideas on these questions of pure mathematics
were quite original, as appears from his remark that
"neither is the number of squares less than the totality

of all numbers, nor the latter greater than the former."

This defense of the actually infinite (given by Salviati

in the "Discorsi") was consciously directed against the
Aristotelian and scholastic position (represented by
Simplicio). The "Discorsi" also contain the parabolic

orbit of the projectile, with tables for height and range
as functions of the angle of elevation and given initial

velocity. Salviati also remarks that the catenary looks

like a parabola, but does not give the precise description

of the curve.

The time had now arrived for a first systematic

exposition of the results reached so far in what we now
call the calculus. This exposition appeared in the"Geo-
metria indivisibilibus continuorum" (1635) of Bonaven-
tura Cavalieri, professor at the University of Bologna.
Here Cavalieri established a simple form of the calculus,

basing it on the scholastic conception of the "indivisi-

buV", the point generating the line, the line generat-
ing the plane by motion. Cavalieri, therefore, had no
infinitesimals or "atoms." He came to his results by
the "principle of Cavalieri," which concludes that two
solids of equal altitudes have the same volume, if plane
cross sections at equal height have the same area. It

Cnurlrgy of Ocnpta Mathematica

GALILEO (1564-1642)

lF. Cajori, Indivisibles and "ghosts of departed quantities" in the
History of Mathematics, Scientia 1925. pp. 301-306; E. Hoppe,
Zur GeschichU der Infinitesimalrechnung bis Leibniz und Newton,
Jahresb. Deutsch. Math. Verein.37. (1928) pp. 148-187. On certain
statements in Hoppe see C. B. Boyer, I.e., pp. 192, 206, 209.
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allowed him to perform the equivalent of the integration

of polynomials.

3. This gradual evolution of the calculus was con-

siderably stimulated by the publication of Descartes'

"Geometric" (1637), which brought the whole field of

classical geometry within the scope of the algebrists.

The book was originally published as an appendix to

the "Discours de la Meihode", the discourse on reason,

in which the author explained his rationalistic approach

to the study of nature. Ren6 Descartes was a French-

man from Touraine, lived the life of a gentleman, served

for a while in the army of Maurice of Orange, stayed

for many years in the Netherlands, and died in Stock-

holm to which city be had been invited by the Queen

of Sweden. In accordance with marly other great think-

ers of the Seventeenth Century, Descartes searched for

a general method of thinking in order to be able to

facilitate inventions and to find the truth in the sciences.

Since the only known natural science with some degree

of systematic coherence was mechanics, and the key to

the understanding of mechanics was mathematics,

mathematics became the most important means for

the understanding of the universe. Moreover, mathe-

matics with its convincing statements was itself the

brilliant example that truth could be found in science.

The mechanistic philosophy of this period thus came to

a conclusion which was similar to that of the Platonists,

but for a different reason. Platonists, believing in au-

thority, and Cartesians, believing in reason, both found

in mathematics the queen of the sciences.

Descartes published his "Geomeirie" as an applica-

A pro's celapreoantvn point a difcretion dans lacourbe,

comme C, fur lequel ie fuppofe que l'inftrument qui fcrt

aladefcrireeftappliqucf, ic tire de ce point C laligne

C B parallele aG A, & pourceque C B & B A font deux

quantity indetermine'es & inconnues , ie les nomme

l'vnej &l'autrex. maisaffin dc trouuer lc rapport de

Ivneal'autrc; ieconfidere aufly les quantitds connues
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,
&
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tion of his general method of unification, in this case
the unification of algebra and geometry. The merits of

the book, according to the commonly accepted point
of view, consist mainly in the creation of so-called

analytical geometry. It is true that this branch of

mathematics eventually evolved under the influence of

Descartes' book, but the "Geom&rie" itself can hardly
be considered a first textbook on this subject. There are
no "Cartesian" axes and no equations of the straight

line and of conic sections are derived, though a par-

ticular equation of the second degree is interpreted as

denoting a conic section. Moreover, a large part of the
book consists of a theory of algebraic equations, con-
taining the "rule of Descartes" to determine the number
of positive and negative roots.

We must keep in mind that Apollonios already had a
characterization of conic sections by means of what we
now—with Leibniz—call coordinates, and Pappos had
in his "Collection" a "Treasury of Analysis" ("Analy-
omenos"), in which we have only to modernize the
notation to obtain a consistent application of algebra
to geometry. Even graphical representations occur be-

fore Descartes (Oresme). Descartes' merits lie above
all in his consistent application of the well developed
algebra of the early Seventeenth Century to the
geometrical analysis of the Ancients, and by this, in

an enormous widening of its applicability. A second
merit is Descartes' final rejection of the homogeneity
restrictions of his predecessors which even vitiated

VieteV'logistica speciosa," so that x*, x*, xy were now
considered as line segments. An algebraic equation be-
came a relation between numbers, a new advance in

REN* DESCAHTES (1596-1650)
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mathematical abstraction necessary for the general

treatment of algebraic curves.

Much in Descartes' notation is already modern; we

find in his book expressions such as Ja + W-r aa + 66,

which differs from our own notation only in Descartes'

still writing aa for a" (which is even found in Gauss),
though he has a

3
for aaa, a* for aaaa, etc. It is not hard

to find one's way in his book, but we must not look for

our modern analytical geometry.

A little closer to such analytical geometry came Pierre

Fermat, a lawyer at Toulouse, who wrote a short paper
on geometry probably before the publication of Des-
cartes' book, but which was only published in 1679.
In this "Isagoge" we find the equations y = mx, xy =
&*» x* + y

2 = a", x
a ± oV = 6

s
assigned to lines and

conies, with respect to a system of (usually perpendicu-
lar) axes. However, since it was written in Viete's nota-
tion, the paper looks more archaic than Descartes'

"Geometric." At the time when Format's "Isagoge"
was printed there were already other publications in

which algebra was applied to Apollonios' results, not-
ably the "Tractatus de sectionibus conicis" (1655) by
John Wallis and a part of the "Elementa curvarum
linearum" (1659) written by Johan De Witt, grand
pensionary of Holland. Both these works were written
under the direct influence of Descartes. But progress
was very slow; even L'Hospital's "Traite" analytiquc
des sections coniques" (1707) has not much more than
a transcription of Apollonios into algebraic language.
All authors hesitated to accept negative values for the
coordinates. The first to work boldly with algebraic

PASCAL EXPLAINS TO DESCARTES HIS PLANS FOB

EXPEBIMENTS IN WEIGHT

(From a painting by Chartran in the Sorbonne)

The group in the right hand corner consists of Desargues,

Mereenne, Pascal and Descartes.
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equations was Newton in his study of cubic curves

(1703); the first analytic geometry of conic sections

which is fully emancipated from Apollonios appeared

only with Euler's " Introductio" (1748).

4. The appearance of Cavalieri's book stimulated a

considerable number of mathematicians in different

countries to study problems involving infinitesimals.

The fundamental problems began to be approached
in a more abstract form and in this way gained in

generality. The tangent problem, consisting in the

search for methods to find the tangent to a given

curve at a given point, took a more and more prom-
inent place beside the ancient problems involving vol-

umes and centers of gravity. In this search there were
two marked trends, a geometrical and an algebraic one.

The followers of Cavalieri, notably Torricelli and Isaac

Barrow, Newton's teacher, followed the Greek method
of geometrical reasoning without caring too much about
its rigor. Christiaan Huygens also snowed a definite

partiality for Greek geometry. There were others,

notably Fermat, Descartes, and John Wallis, who
showed the opposite trend and brought the new algebra

to bear upon the subject. Practically all authors in

this period from 1630 to 1660 confined themselves to

questions dealing with algebraic curves, especially those

with equation a
m
y" = b"x

m
. And they, found, each in

his own way, formulas equivalent to Jl x" dx =
a"*

l

/(m -f- i), first for positive integer m, later for m
negative integer and fractional. Occasionally a non-
algebraic curve appeared, such as the cycloid (roulette)

investigated by Descartes and Blaise Pascal; Pascal's
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"Traite" general de la roulette" (1658), a part of a

booklet published under the name of A. Dettonville,

had great influence on young Leibniz.
1

In this period several characteristic features of the

calculus began to appear. Fermat discovered in 1638 a

method to find maxima and minima by changing

slightly the variable in a simple algebraic equation and

then letting the change disappear; it was generalized

in 1658 to more general algebraic curves by Johannes

Hudde, a burgomaster of Amsterdam. There were deter-

minations of tangents, volumes, and centroids, but the

relation between integration and differentiation as in-

verse problems was not really grasped (except perhaps

by Barrow). Pascal occasionally used expansions in

term of small quantities in which he dropped the terms

of lower dimensions—anticipating the debatable as-

sumption of Newton that (i + dx) {y + dy) - xy =

xdy +ydx. Pascal defended his procedure by appealing

to intuition ("esprit de finesse") rather than to logic

("esprit de g6om6tric"), here anticipating Bishop Ber-

keley's criticism of Newton*

Scholastic thought entered into this search for new

methods not only through Cavalieri but also through

the work of the Belgian Jesuit, Gr6goire De Saint

Vincent and his pupils and associates, Paul Guldin and

Andre
1

Tacquet. These men were inspired by both the

spirit of their age and the medieval scholastic writings

on the nature of the continuum and the latitude of

H. Bosnians, Sur I'oeuwe malhimalique de Blaise Pascal, Revue

des Questions Scicntifiquee (1929), 63 pp.
lB. Pascal, Oeuvres (Paris, 1908-1914) XII., p. 9, XIII, pp.

141-155.
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forms. In their writings the term "exhaustion" for

Archimedes' method appears for the first time. Tacquet's

book, "On Cylinders and Rings" (1651) influences

Pascal.

This fervid activity of mathematicians in a period

when no scientific periodicals existed led to discussion

circles and to constant correspondence. Some figures

gained merit by serving as a center of scientific inter-

change. The best known of these men is the Minorite

Father Marin Mersenne, whose name as a mathemati-
cian is preserved in Mersenne's numbers. With him
corresponded Descartes, Fermat, Desargues, Pascal,

and many other scientists.
1

Academics crystallized out
of the discussion groups of learned men. They arose in a
way as opposition to the universities which had devel-

oped in the scholastic period—with some exceptions

such as Leiden University—and still fostered the medi-
eval attitude of presenting knowledge in fixed forms.

The new academies, on the contrary, expressed the new
spirit of investigation. They typified "this age drunk
with the fulness of new knowledge, busy with the up-
rooting of superannuated superstitions, breaking loose

from traditions of the past, embracing most extravagant
hopes for the future. Here the individual scientist

learned to be contented and proud to have added an
infinitesimal part to the sum of knowledge; here, in

short, the modern scientist was evolved."1

"'Informer Merecnne d'une decouverte, c'6tait la publier par
1'Europe entire," writes H. Bosnians (I.e., p. 43: "To inform
Mersenne of a discovery, meant to publish it throughout the
whole of Europe").

*M. Ornstein, The Role of Scientific Societies in the Seventeenth

Century (Chicago, 1913).
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The first academy was founded in Naples (1560); it

was followed by the "Accadcmia dei Lincei" in Rome

(1603). The Royal Society dates from 1662, the French

Academy from 1666. Wallis was a charter member of

the Royal Society, Huygens of the French Academy.

5. Next to Cavalieri's one of the most important

books written in this period of anticipation is Wallis'

"Arithmetic!! infinitorum" (1655). The author was from

1643 until his death in 1703 the Savilian professor of

geometry at Oxford. Already the title of his book shows

that Wallis intended to go beyond Cavalieri with his

"Gcomctria indivisibilium" ; it was the new "arith-

metica" (algebra) which Wallis wanted to apply, not

the- ancient geometry. In this process Wallis extended

algebra into a veritable analysis—the first mathema-

tician to do so. His methods of dealing with infinite

processes were often crude, but he obtained new results;

he introduced infinite series and infinite products and

used with great boldness imaginaries, negative and frac-

tional exponents. He wrote » for ^ (and claimed that

— 1 > <» ). Typical of his results is the expansion

x _ 2-2-44G-6-88 • ••

2~ 1-3-3-5-5-779

Wallis was only one of a whole series of brilliant men

of this period, who enriched mathematics with discovery

after discovery. The driving force behind this flowering

of creative science, unequalled since the great days of

Greece, was only in part the ease with which the new

techniques could be handled. Many great thinkers were

ii
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in search of more: of a "general method"—sometimes
conceived in a restricted sense as a method of mathe-
matics, sometimes more general as a method of under-
standing nature and of creating new inventions. This
is the reason why in this period all outstanding philoso-

phers were mathematicians and all outstanding math-
ematicians philosophers. The search for new inventions
sometimes led directly to mathematical discoveries. A
famous example is the "Horologium oscillatorium"

(1673) of Christiaan Huygens, where the search for

better timepieces led not only to pendulum clocks but
also to the study of evolutes and involutes of a plane
curve. Huygens was a Hollander of independent means
who stayed for many years in Paris; he was eminent as

a physicist as well as an astronomer, established the
wave theory of light, and explained that Saturn had
a ring. His book on pendulum clocks was of influence on
Newton's theory of gravitation; it represents with
Wallis' "Arithmetica" the most advanced form of the
calculus in the period before Newton and Leibniz. The
letters and books of Wallis and of Huygens abound in

new discoveries, in rectifications, envelopes, and quadra-
tures. Huygens studied the tractrix, the logarithmic

curve, the catenary, and established the cycloid as
a tautochronous curve. Despite this wealth of results,

many of which were found after Leibniz had published
his calculus, Huygens belongs definitely to the period
of anticipation. He confessed to Leibniz that he never
was able to familiarize himself with Leibniz' method.
Wallis, in the same way, never found himself at home in

Newton's notation. Huygens was one of the few great
Seventeenth Century mathematicians who took rigor

CHIUSTIAAN HUYGENS (1629-1695)
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seriously; his methods were always strictly Archi-

median.

6. The activity of the mathematicians of this period
stretched into many fields, new and old. They enriched
classical topics with original results, cast new light upon
ancient fields, and even created entirely new subjects

of mathematical research. An example of the first case

was Fermat's study of Diophantos; an example of the
second case was Desargues' new interpretation of geo-
metry. The mathematical theory of probability was an
entirely new creation.

Diophantos became available to a Latin reading
public in 1621". In Fermat's copy of this translation

are found his famous marginal notes, which his son
published in 1070. Among them we find Fermat's "great
theorem" that x" + y" = z" is impossible for positive

integer values of x, y,z,nitn > 2, which led Kummer
in 1847 to his theory of ideal numbers. A proof valid
for all n has not yet been given, though the theorem is

certainly correct for a large number of values.'
2

Fermat wrote in the margin beside Diophantos II 8:

"To divide a square number into two other square
numbers," the following words: "To divide a cube into
two other cubes, a fourth power, or in general any
power whatever into two powers of the same denomi-
nation above the second is impossible, and I have
assuredly found an admirable proof of this, bul the
margin is too narrow to contain it." If Fermat had such

'First roiidily available Latin translations: Euclid 14S2; Ptol-
emy 1515; Archimndcs 1558; Apollonios I-IV, 1566, V-VII 1061;
Pappos 1589; Diophantos 1621.

•See H. S. Vandiver, Am. Math. Monthly. 53 (1946) pp. 555-78.
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admirable proof, then three centuries of intense research

have failed to produce it again. It is safer to assume

that even the great Fermat slept sometimes.

Another marginal note of Fermat states that a prime

of form 4n + 1 can be expressed once, and only once, as

the sum of two squares, which theorem was later dem-

onstrated by Euler. The other "theorem of Fermat,"

which states that a"'
1 — 1 is divisible by p when p is

prime and a is prime to p, appears in a letter of 1640;

this theorem can be demonstrated by elementary means.

Fermat was also the first to assert that the equation

x
3 — Ay1 = 1 (A a non-square integer) has an un-

limited number of integer solutions.

Fermat and Pascal were the founders of the mathe-

matical theory of probabilities. The gradual emergence

of the interest in problems relating to probabilities is

primarily due to the development of insurance, but the

specific questions which stimulated great mathematic-

ians to think about this matter came from requests of

noblemen gambling in dice or cards. In the words of

Poisson: "Un probleme relatif aux jeux de hasard,

propose^ a un austere jans6niste par un homme du

monde, a 6t6 l'origine du calcul des probability"'.

This "man of the world" was the Chevalier De Mere\

who approached Pascal with a question concerning the

so-called "probleme des points". Pascal began a corres-

pondence with Fermat on this problem and on related

questions, and both men established some of the founda-

'"A problem concerning games of chance, proposed by a man
of the world to an austere Jansenist, was the origin of the calculus

of probabilities" (S. D. Poisson, Recherches sur la probabililt des

jugements, 1837, p. 1).
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tions of the theory of probability (1654). When Huygens

came to Paris he heard of this correspondence and tried

to find his own answers; the result was the "De ratio-

ciniis in ludo aleae" (1657), the first treatise on prob-

ability. The next steps were taken by De Witt and

Ilalley, who constructed tables of annuities (1671 , 1693).

Blaise Pascal was the son of Etiennc Pascal, a cor-

respondent of Merscnnc; the "limacon of Pascal" is

named after Etienne. Blaise developed rapidly under

his father's tutelage and at the age of sixteen discovered

"Pascal's theorem" concerning a hexagon inscribed in

a conic. It was published in 1641 on a single sheet of

paper and showed the influence of Desargues. A few-

years later Pascal invented a computing machine. At
the age of twenty-five he decided to live the ascetic life

of a Jansenist in the convent of Port Royal, but con-

tinued to devote time to science and to literature. His

treaty on the "arithmetical triangle" formed by the

binomial coefficients and useful in probability appeared

posthumously in 1664. We have already mentioned his

work on integration and his speculations on the infin-

itesimal, which influenced Leibniz.

Gerard Desargues was an architect from Lyons and
the author of a book on perspective (1636). His pam-
phlet with the curious title of "Brouillon projet d'une

atteinte aux eVenemcnts des rencontres d'un cone avec

un plan'" (1639) contains in a curious botanical lan-

guage some of the fundamental conceptions of synthetic

geometry, such as the points at infinity, involutions,

polarities. His "Desargues' theorem" on perspective

'"Proposed draft of ao attempt to deal with the events of

the meeting of a cone witli a plane."
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triangles was published in 1648. These ideas did not

show their full fertility until the Nineteenth Century.

7. A general method of differentiation and integra-

tion, derived in the full understanding that one process

is the inverse of the other, could only be discovered by

men who mastered the geometrical method of the

Greeks and of Cavalieri, as well as the algebraic method

of Descartes and Wallis. Such men could have appeared

only after 1660, and they actually did appear in Newton

ami Leibniz. Much has been written about the priority

of the discovery, but it is now established that both men

found their methods independently of each other. New-

ton had the calculus first (Newton in 1665-66; Leibniz

in 1673-76), but Leibi:iz published it first (Leibniz

1684-86; Newton 1704-1736). Leibniz' school was far

more brilliant than Newton's school.

Isaac Newton was the son of a country squire in

Lincolnshire, England. He studied at Cambridge under

Isaac Barrow who in 1669 yielded the Lucasian pro-

fessorship to his pupil—a remarkable academic event

since Barrow frankly acknowledged Newton to bo Ins

superior. Newton stayed at Cambridge until 1696 when

he accepted the position of warden, and later of master,

of the mint. His tremendous authority is primarily

based on his " Philosophiae naturalis principia math-

ematica" (1687), an enormous tome establishing me-

chanics on an axiomatic foundation and containing the

law of gravitation—the law which brings the apple to

the earth and keeps the moon moving around the earth.

He showed by rigorous mathematical deduction how the

empirically established laws of Kepler on planetary
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motion were the result of the gravitational law of inverse

squares and gave a dynamical explanation of many

aspects of the motions of heavenly bodies and of the

tides. He solved the two-body problem for spheres and

laid the beginnings of a theory of the moon's motion.

By solving the problem of the attraction of spheres he

also laid the foundation of potential theory. His axio-

matic treatment postulated absolute space and absolute

time. , ,.

The geometrical form of the demonstrations hardly

shows that the author was in full possession of the

calculus, which he called the "theory of fluxions.

Newton discovered his general method during the years

1665-66 when he stayed at his birthplace in the country

to escape from the plague which infested Cambridge.

From this period also date his fundamental ideas on

universal gravitation, as well as the law of the composi-

tion of light. "There are no other examples of achieve-

ment in the history of science to compare with that of

Newton during those two golden years," remarks Pro-

fessor More'.

Newton's discovery of" fluxions" was intimately con-

nected with his study of infinite series in Walhs' " Arith-

metica." It brought him to extend the binomial theorem

to fractional and negative exponents and thus to the

discovery of the binomial series. This again helped him

greatly in establishing his theory of fluxions to all

functions, whether algebraic or transcendental. A flux-

ion", expressed by a dot placed over a letter ( pricked

>L. T. More, Isaac NeuUm. A Biography (N. Y., London, 1934)

p. 41.
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letters") was a finite value, a velocity; the letters with-
out the dot represented "fluents."

Here is an example of the way in which Newton ex-

plained his method ("Method of Fluxions", 1736): The
variables of fluents are denoted by v, x,y,z, "and
the velocities by which every fluent is increased by its

generating motion (which I may c&\\ fluxions, or simply
velocities, or celerities), I shall represent by the same
letters pointed, thus v, x, y, z." Newton's infinitesimals

are called "moments of fluxions," which arc represented
by vo, xo, yo, zo, o being "an infinitely small quantity."
Newton then proceeds:

"Thus let any equation x
3 — ax

1 + axy —
y
3 =

be given, and substitute x + xo for x, y + yo for y,
and there will arise

i
3 + 3x

3
xo + Zx'xoxo + iV - ax

2 - 2axxo

- axoxo + axy + ayxo + axoyo + axyo

- V* ~ Sy'i/o - Zyyoyo - y
3
o
3 =

'|Now, by supposition, x
3 - ax

3 + axy - y
3 = 0,

which therefore, being expunged and the remaining
terms being divided by o, there will remain

3x
2
x - 2axx + ayx + axy - 3y

7
y + 3xxxo - axxo

+ axyo — Zyyyo + x
3
oo — y

3
oo = 0.

"But whereas zero is supposed to be infinitely little,

that it may represent the moments of quantities, the
terms that are multiplied by it will be nothing in respect
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to the rest; I therefore reject them, and there remains

3i
2

i - 2axx + ayx + axy - 3y
7
y = 0."

This example shows that Newton thought of his

derivatives primarily as velocities, but it also shows that

there was a certain vagueness in his mode of expression.

Are the symbols "o" zeros? are they infinitesimals? or

are they finite numbers? Newton has tried to make his

position clear by the theory of "prime and ultimate

ratios," which he introduced in the "Principia" and

which involved the conception of limit but in such a

way that it was very hard to understand it.

"Those ultimate ratios with which quantities vanish are not

truly the ratios of ultimate quantities, but limits toward which

the ratios of quantities, decreasing without limit, do always

converge, and to which they approach nearer than by any given

difference, but never go beyond, nor in effect attain to, until the

quantities have diminished in infinitum". (Principia I, Sect. I,

last scholium).

"Quantities, and the ratio of quantities, which in any finite

time converge continually to equality, and before the end of that

time approach nearer the one to the other than by any given

difference, become ultimately equal" (IB, I, I, Lemma I).

This was far from clear, and the difficulties which the

understanding of Newton's theory of fluxions involved

led to much confusion and severe criticism by Bishop

Berkeley in 1734. The misunderstandings were not re-

moved until the modern limit concept was well estalv

lished.

Newton also wrote on conies and plane cubic curves.

In the "Enumeratio linearum tertii ordinis" (1704) he

gave a classification of plane cubic curves into 72
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species, basing himself on bis theorem that every cubic
can be obtained from a "divergent parabola" y

3 =
ax3 + bx* + ex + d by central projection from one
plane upon another. This was the first important new
result reached by the application of algebra to geometry,
all previous work being simply the translation of Apol-
lonios into algebraic language. Another contribution of
Newton was his method of finding approximations to
the roots of numerical equations, which he explained
on the example x" - 2x - 5 = 0, which yields x =
2.09455147.

The difficulty in estimating Newton's influence on
his contemporaries lies in the fact that he always hesi-

tated to publish his discoveries. He first tested the law
of universal gravitation in 1665-66, but did not an-
nounce it until he presented the manuscript of most of
the"Principia" to the printer (1686). His"Arithmetica
universalis," consisting of lectures on algebra delivered
between 1673-1683, was published in 1707. His work on
series, which dates from 1669, was announced in a letter
to Oldenburg in 1676 and appeared in print in 1711.
His quadrature of curves, of 1671, was not published
until 1704; this was the first time that the theory of
fluxions was placed before the world. His "Method of
Fluxions" itself only appeared after his death in 1736.

8. Gottfried Wilhelm Leibniz was born in Leipzig
and spent most of his life near the court of Hanover in

the service of the dukes, of which one became King of
England under the name of George I. He was even more
catholic in his interests than the other great thinkers of
his century; his philosophy embraced history, theology,

<;<OOTTFKIED WIU1ELM LEIBNIZ (1646-1716))

From a picture in the Uffizi Gallery, Florence
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linguistics, biology, geology, mathematics, diplomacy,

and the art of inventing. He was one of the first after

Pascal to invent a computing machine; he imagined

steam engines, studied Sanskrit, and tried to promote

the unity of Germany. The search for a universal

method by which he could obtain knowledge, make
inventions, and understand the essential unity of the

universe was the mainspring of his life. The "scientia

generalis" he tried to build had many aspects, and

several of them led Leibniz to discoveries in mathe-
matics. His search for a " characteristica generalis" led

to permutations, combinations, and symbolic logic; his

search for a "lingua universalis", in which all errors of

thought would appear as computational errors, led not

only to symbolic logic but also to many innovations in

mathematical notation. Leibniz was one of the greatest

inventors of mathematical symbols. Few men have

understood so well the unity of form and content. His

invention of the calculus must be understood against

this philosophical background; it was the result of his

search for a "lingua universalis" of change and of

motion in particular.

Leibniz found his new calculus between 1673 and

1676 under the personal influence of Huygens and by
the study of Descartes and Pascal. He was stimulated by
his knowledge that Newton was reported to be in the

possession of such a method. Where Newton's approach

was primarily cinemetical, Leibniz' was geometrical;

he thought in terms of the "characteristic triangle"

(dx, dy, ds), which had already appeared in several other

writings, notably in Pascal and in Barrow's "Geomet-
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rical Lectures" of 1670.' The first publication of Leibniz'

form of calculus occurred in 1684 in a six page article

in the "Acta Eruditorum," a mathematical periodical

which he had founded in 1682. The paper had the char-

acteristic title, "Nova methodus pro maximis et min-

imis, itemque tangentibus, quae nee fractas nee irra-

tionales quantitates moratur, et singulare pro illi calculi

genus."
2
It was a barren and obscure account, but it

contained our symbols dx, dy and the rules of differentia-

tion, including d(uv) = udv + vdu and the differential

for the quotient, with the condition dy = for extreme

values and d?y = for points of inflexion. This paper

was followed in 1686 by another with the rules of the

integral calculus, containing the / symbol. It expressed

the equation of the cycloid as

y=V2x-x> + 1^=^
An extremely fertile period of mathematical pro-

ductivity began with the publication of these papers.

Leibniz was joined after 1687 by the Bernoulli brothers

who eagerly absorbed his methods. Before 1700 these

men had found most of our undergraduate calculus,

together with important sections of more advanced

'The term "triangulum charactcristicum" seems to have first

been used by Leibniz, who found it by reading Pascal's Traiti

des sinus du quart de cercle, part of his Dettonville letters (1658).

It had already occurred in Snellius' Tiphys Batavus (1624) pp.

22-25.

'"A new method for maxima and minima, as well as tangents,

which is not obstructed by fractional and irrational quantities,

and a curious type of calculus for it."

12
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fields, including the solution of some problems in the
calculus of variations. By 1696 the first textbook on
calculus appeared, written by the Marquis de l'Hospital,

a pupil of Johann Bernoulli, who published his teacher's

lectures on the differential calculus in the "Analyse des
infiniment petits." This book contains the so-called

"rule of l'Hospital" of finding the limiting value of a
fraction whose two terms both tend toward zero.

Our notation of the calculus is due to Leibniz, even
the names "calculus differentialis" and "calculus in-

tegralis."
1

Because of his influence the sign = is used
for equality and the • for multiplication. The terms
"function" and "coordinates" are due to Leibniz, as
well as the playful term "osculating." The series

•^ = i_I + I_l , ..
4 1 3

T
5 7 ^ '

•»-• -•-$ +$-»
are named after Leibniz, though he has not the priority
of the discovery. (This seems to go to James Gregory,
a Scotch mathematician, who also tried to prove that
the quadrature of the circle with compass and ruler is

impossible.)

Leibniz' explanation of the foundations of the calculus
suffered from the same vagueness as Newton's. Some-
times his dx, dy were finite quantities, sometimes quan-

'Leibniz suggested the name "calculus suinmatorius" first,

but in 1696 Leibniz and Johann Bernoulli agreed on the name
"calculus integralis." Modern analysis has returned to Leibniz'
early terminology. See further: F. Cajori, Leibniz, the Master
Builder of Mathematical Notations, Isis 7 (1925) pp. 412-429.

I.

NOVA METIIODtS I'ltO MAXIMIS KT MINIMIS. ITEMUUE TAN-

GEYriBlS, <JlAE .NKC KIIACTAS NEC IIIHATIONALES

».»l ANTITATES MOItATLR, ET SINGliLAIlE I'KO

1I.I.IS (AI.CL1.I GEMS*).

Sil 1% Ill) axis AX. i:l cufvac plures. ul VV, WW, YV, ZZ,

ninnilll ordinalae ad .item normalcs, VX, WX, YX, ZX, quae vo-

cenliir respective v, xv, y. x, i:t i|>sa AX, abscissa al) axe, vocelur I.

Tangrnies sim VII, VtT. YD, ZE, axi ocuirrentes respective in

puutlis B, C. I'. E. Jain recta alii|ua pro arbitrio assumU vocetur

ilx, el rerla, quae sil ail ik, ul v [td ft, vcl y, vel z) est ad XB

(vel SC, vel XI), vel XE) vocetur dv (vel d\v, vel dy, vel dz) sive

differentia ipsariim v (vel ipsarum W, vel y, vel z). His posilis,

calculi ri'jjulae crunt talcs.

Sil a qiianlilas data constans, eril da acqualis 0, cl dax eril

MMpjalb mix. Si sit y aequ. v (scu ordinala quaevis cunae YY

aequalis etiivis urdinalae respondent! curvae YV) eril dy aequ. d».

Jam Additio n Subtraclio: si sil 7— y + w + x aequ. v, eril

ih—y+w + x scu ilv aequ. dz— dy + dw + dx. MnUiflicatio : <Uv

aequ. xdv + vdx. sen |wsilo y aequ. xv. liel dy aequ. xdv + vdx.

In arbitrio enim esl vcl rurmulain ,• ill xv , vel compendia pro ea

iileram . ul y . adbiberc. Nolandum . cl \ cl dx eodem modo in

hoc calcnlo traclari. lit y cl dy, vel aliam lilcram indeterminalam

cum sua differential!. Nolandum e.iam. non dari semper regressum

a differential! Aequalionn. nisi cum quadani cautione, de quo alibi.

v v, ,
±vdy:rydv

I'orro IHniiio: d T vcl (positn z aequ. -) dz aequ. ——

.

Quoad Siijun line probe nolandum, cum in calculo pro lilera

siibslilnitur simplicilcr ejus differenlialis, servari quidem eadem

si(-ua, el pro 4- z scribi + dz, pro — z scribi — dz. ut ex addi-

•) Act. Enid. Lins. an. 1084.

leibniz's first paper on the calculos (As reprinted by

C. I. Gerhardt, 1858)
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tities less than any assignable quantity and yet not
zero. In the absence of rigorous definitions he presented
analogies pointing to the relation of the radius of the
earth to the distance of the fixed stars. He varied his
modes of approach to questions concerning the infinite;
in one of his letters (to Foucher, 1693) he accepted the
existence of the actually infinite to overcome Zeno's
difficulties and praised Grggoire de Saint Vincent who
had computed the place where Achilles meets the tor-
toise. And just as Newton's vagueness provoked the
criticism of Berkeley, so Leibniz' vagueness provoked
the opposition of Bernard Nieuwentijt, burgomaster
of Purmerend near Amsterdam (1694). Both Berkeley's
and Nieuwentijt's criticism had their justification, but
they were entirely negative. They were unable to supply
a rigorous foundation to the calculus, but inspired
further constructive work.
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CHAPTER VII

The Eighteenth Century

1. Mathematical productivity in the Eighteenth Cen-

tury concentrated on the calculus and its application

to mechanics. The major figures can be arranged in a

kind of pedigree to indicate their intellectual kinship:

Leibniz—(1646-1716)

The brothers Bernoulli: Jakob (1654-1705), Johann

(1667-1748)

Euler—(1707-1783)

Lagrange—(1736-1813)

Laplace—(1749-1827)

Closely related to the work of these men was the

activity of a group of French mathematicians, notably

Clairaut, D'Alembert, and Maupertuis, who were again

connected with the philosophers of the Enlightenment.

To them must be added the Swiss mathematicians

Lambert and Daniel Bernoulli. Scientific activity usu-

ally centered around Academies, of which those at

Paris, Berlin, and St. Petersburg were outstanding. Uni-

versity teaching played a minor role or no role at all. It

was a period in which some of the leading European

countries were ruled by what has euphemistically been

called enlightened despots: Frederick the Great, Cath-

erine the Great, perhaps also Louis XV. Part of these

despots' claim to glory was their delight in having

learned men around. This delight was a type of intellec-

tual snobbery, tempered by some understanding of the

important role which natural science and applied mathe-
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matics were taking in improving manufactures and
increasing the efficiency of the military. It is said, for

instance, that the excellence of the French navy was due
to the fact that in the construction of frigates and of

ships of the line the master shipbuilders were partly led

by mathematical theory . Euler's works abound in appli-

cations to 'juestions of importance to army and navy.

Astronomy continued to play its outstanding role as

foster-mother to mathematical research under royal and
imperial protection.

2. Basle in Switzerland, a free empire city since 1263,
had long been a center of learning. In the days of

Erasmus its university was already a great center. The
arts and sciences flourished in Basle, as in the cities of

Holland, under the rule of a merchant patriciate. To
this Baale patriciate belonged the merchant family of

the Bernoullis, who had come from Antwerp in the
previous century after that city had been conquered
by the Spanish. From the late Seventeenth Century
to the present time this family in every generation has
produced scientists. Indeed it is difficult to find in the
whole history of science a family with a more distin-

guished record.

This record begins with two mathematicians, Jakob
(James, Jacques) and Johann (John, Jean) Bernoulli.

Jakob studied theology, Johann studied medicine; but
when Leibniz' papers in the "Acta eruditorum" ap-
peared both men decided to become mathematicians.
They became the first important pupils of Leibniz.
In 1687 Jakob accepted the chair of mathematics at
Basle University where he taught until his death in
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1705. In 1697 Johann became professor at Groningen;

on his brother's death he succeeded him in his chair

at Basle where he stayed for forty-three more years.

Jakob began his correspondence with Leibniz in 1687.

Then in constant exchange of ideas with Leibniz and

with each other—often in bitter rivalry among them-

so l v0<;—the two brothers began to discover the treasures

contained in Leibniz' pioneering venture. The list of

their results is long and contains not only much of the

material now contained in our elementary texts on

differential and integral calculus but also in the inte-

gration of many ordinary differential equations. Among

Jakob's contributions arc the use of polar coordinates,

the study of the catenary (already discussed by Huygens

and others), the lemniscate (1694), and the logarithmic

spiral. In 1690 he found the so-called isochrone, pro-

posed by Leibniz in 1687 as the curve along which a

body falls with uniform velocity; it appeared to be a

-( mi-cubic parabola. Jakob also discussed isoperimetric

figures (1701), which led to a problem in the calculus of

variations. The logarithmic spiral, which has a way of

reproducing itself under various transformations (its

evolutc is a logarithmic spiral and so are both the pedal

curve and the caustic with respect to the pole), was

such a delight to Jakob that he willed that the curve

be engraved on his tombstone with the inscription

"eadem mutata resurgo." 1

Jakob Bernoulli was also one of the early students

of the theory of probabilities, on which subject he

wrote the" Ars conjectandi," published posthumously in

1 "I arise the same though changed." The spiral on the grave-

stone, however, looks like an Archimedian spiral.
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1713. In the first part of this book Huygens' tract on
games of chance is reprinted; the other parts deal with
permutations and combinations and come to a climax
in the "theorem of Bernoulli" on binomial distributions.

"Bernoulli's numbers" appear in this book in a dis-

cussion of Pascal's triangle.

3. Johann Bernoulli's work was closely related to that
of his older brother, and it is not always easy to dis-

criminate between the results of these two men. Johann
is often considered the inventor of the calculus of varia-
tions because of his contribution to the problem of the
brachystochrone. This is the curve of quickest descent
for a mass point moving between two points in a
gravitational field, a curve studied by Leibniz and the
Bernoullis in 1697 and the following years. At this

time they found the equation of the geodesies on a
surface.

1

The answer to the problem of the brachysto-
chrone is the cycloid. This curve also solves the problem
of the tautochrone, the curve along which a mass point
in a gravitational field reaches the lowest point in a
time independent of its starting point. Huygens dis-
covered this property of the cycloid and used it in

constructing tautochronous pendulum clocks (1673) in

which the period is independent of the amplitude.
Among the other Bernoullis who have influenced the

course of mathematics are two sons of Johann : Nicolaus*

'Newton in a scholium of the "Principia" (II, Prop. 35) had
already discussed the solid.of revolution moving in a liquid with
least resistance. He published no proof of his contention.

and above all Daniel.
2

Nicolaus was called to St.

Petersburg, founded only a few years before by Czar

Peter the Great; he stayed there for a short period.

The problem in the theory of probability which he

proposed from that city is known as the "problem"

(or, more dramatically, the "paradox") of St. Peters-

burg. This son of Johann died young but the other,

Daniel, lived to a ripe age. Until 1777 he was professor

at the University of Basle. Daniel's prolific activity

was mainly devoted to astronomy, physics, and hydro-

dynamics. His"Hydrodynamica" appeared in 1738 and

one of its theorems on hydraulic pressure carries his

name. In the same year he established the kinetic

theory of gasses; with D'Alembert and Euler he studied

the theory of the vibrating string. Where his father and

uncle developed the theory of ordinary differential equa-

tions, Daniel pioneered in partial differential equations.

4. Also from Basle came the most productive mathe-

matician of the Eighteenth Century— if not of all times

—Leonard Eulor. His father studied mathematics under

Jakob Bernoulli and Leonard studied it under Johann.

Nicolaus Bernoulli

Jakob (1654-1705)

"Are conjectandi"

Johann (1667-1748)

"brachystochrone"

Nicolaus (1695-1726) Daniel (1700-1784)

"St. Petersburg problem" "hydrodynamics"
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When in 1725 Johann's son Nicolaus travelled to St.
Petersburg, young Euler followed him and stayed at the
Academy until 1741. From 1741 to 1766 Euler was
at the Berlin Academy under the special tutelage of
Frederick the Great; from 1766-1783 he was again at
St. Petersburg, now under the egis of the Empress
Catherine. He married twice and had thirteen children.
The life of this Eighteenth Century academician was
almost exclusively devoted to work in the different
fields of pure and applied mathematics. Although he
lost one eye in 1735 and the other eye in 1766, nothing
could interrupt his enormous productivity. The blind
Euler, aided by a phenomenal memory, continued to
dictate his discoveries. During his life 530 books and
papers appeared; at his death he left many manuscripts,
which were published by the St. Petersburg academy
during the next forty-seven years. (This brings the
number of his works to 771, but research by Gustav
Enestrom has completed the list to 886.)

Euler made signal contributions in every field of
mathematics which existed in his day. He published his
results not only in articles of varied length but also in an
impressive number of large textbooks which ordered
and codified the material assembled during the ages.
In several fields Euler's presentation has been almost
final. An example is our present trigonometry with its

conception of trigonometric values as ratios and its
usual notation, which dates from Euler's "Introductio
in analysin infinitorum" (1748). The tremendous pres-
tige of his textbooks settled for ever many moot ques-
tions of notation in algebra and calculus; Lagrange,

Laplace, and Gauss knew and followed Euler in all

their works.

The "Introductio" of 1748 covers in its two volumes

a wide variety of subjects. It contains an exposition of

infinite series including those for e', sin a;, and cos x,

and presents the relation e" = cos x + i sin i (already

discovered by Johann Bernoulli and others in different

forms). Curves and surfaces are so freely investigated

with the aid of their equations that we may consider the

"Introductio" the first text on analytic geometry. We

also find here an algebraic theory of elimination. To the

most exciting parts of this book belong the chapter on

the Zeta function and its relation to the prime number

theory, as well as the chapter on partitio numerorum.
1

Another great and rich textbook was Euler's" Institu-

lioncs calculi different ialis" (1755), followed by three

volumes of "Institutions calculi integralis" (1768-

1774). Here we find not only our elementary differential

and integral calculus but also a theory of differential

equations, Taylor's theorem with many applications,

Euler's "summation" formula, and the Eulerian inte-

grals T and B. The section on differential equations

with its distinction between "linear", "exact", and

"homogeneous" equations is still the model of our ele-

mentary texts on this subject.

Euler's "Mechanica, sive motus scientia analyticc

exposita" (1736) was the first textbook in which New-

ton's dynamics of the mass point was developed with

analytical methods. It was followed by the "Theoria

motus corporum solidorum seu rigidorum" (1765) in

•See the preface to the "Introductio" by A. Speiser: Euler,

Opera I, 9 (1945).
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LEONARD EULER (1707-1783)

From the portrait by A. Lorgna

which the mechanics of solid bodies was similarly

treated. This textbook contains the "Eulerian" equa-

tions for a body rotating about a point. The "Voll-

staendige Anleitung zur Algebra" (1770)—written in

German and dictated to a servant—has been the model

of many later texts on algebra. It leads up to the theory

of cubic and biquadratic equations.

In 1744 appeared Euler's "Methodus inveniendi

lineas curvas maximi minim ive proprietate gauden-

tes." This was the first exposition of the calculus of

variations; it contained " Euler's equations" with many

applications, including the discovery that catenoid and

right helicoid are minimal surfaces. Many other

results of Euler can be found in his smaller papers

which contain many a gem, little known even today.

To the better known discoveries belong the theorem

connecting the number of vertices (V), edges (£), and

faces (F) of a closed polyhedron (V + F - E = 2);

the line of Euler in the triangle; the curves of constant

width (Euler called them orbiform curves); and the

constant of Euler

+ ... +1- logn) = -577216 •••

Several papers are devoted to mathematical recreations

(the seven bridges of Konigsberg, the knight's jump in

chess). Euler's contributions to the theory of numbers

alone would have given him a niche in the hall of fame,

to his discoveries in this field belongs the law of

quadratic reciprocity.

A large amount of Euler's activity was devoted to

astronomy, where the lunar theory, an important sec-

lAlready known to Descartes.
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Secantes autem et coaecantes ex tangentibus per solam eubtractionem

inYeniuntur; est enim

et bine

cotec. 1— coty*— eoti

sec. I— cot(45*— y*j— tang.*-.

Ex hia ergo lnculenter perspicitur, qaomodo canones ainnnm conetrai pc-

tuerint.

188. Ponatur denuo in formulis § 133 arena t infinite parvus et ait •

numeral infinite magnus i, ut ii obtineat valorem flnitum v. Erit ergo

m— v et m— j , unde ain. /— J et coa. 1 — 1; hia substantia fit

atque

ain.o —
aV-i

In capita aatem praecedente vidimus eeae

denoUnte e basin logarithmorum hyperbolicorum; scripto ergo pro J partim

+ »V— 1 putim — frV— 1 erit

COS. V —

ain.« —
tY-1.

Ex quibua inteUigitor, quomodo quantitates exponentiales imaginariae ad

inns et eoainus arcnum realium redueantur. ') Erit vero

1) Hu ealabarriataa formulu, quai ab intent*™ formulas Ecianatt nomioaro «olemui,

louaua diitincU primum aipoinit in CommenUtiono 61 (indicii ExnTaonuw): Be tvmmii

It'

the p^obs IN ecler's Inlroductio where e** = cos x + i sin X

18 INTRODUCED

148 TOMI PB1MI CAPUT VI11 § 138-140 [104-10*

et

t*'V-' — cos. i' + V— 1 • aiiM;

e-.f-i — cob.0 .. /_ i.«in.t).

139. Sit iam in iiadem formulia |133 » uumerua infinite parvua ten

„ — -'- existent* t nuiuero infinite magno; erit

coa ni— cos. -.- — 1 et ain. «f— ain.j — jj

arena enim evaneacentia '- sinus est ipsi aequalia, cosinus Tero — 1. Hia

positis habebitar

1_ 6»/±Ji: *•*•!>'+<«»«-y-*•***)

et
f

• (eoa.« + V-I»in.»)'- (eoaf-y-l-alB.«)'

SumendiB autem logarithmis hjperbolicis aupra d 125) oBtendimua eaae

l(l+s)-i(l +*)"«'-• seu y'-l + f»y

poaito y loco.l+i. Nunc igitur poeito loco y partim coe.» + V— 1- tin.*

partim coa.a— V— 1-ain. 1 prodibit

jfrvrvm reefrroecnnn a folttinibui muiieron... MfwaKwii orfemnn. Miiealliau BorolU. T,

17*3, p. ITS) LnimAMi Ecuuu Optra omnia, aeriee I, Ml 14. Iam ulta quldaa com amioo

Cm. Gou>»ic« (1690-1764) formula hoe partiMnUa, partim iptdalat partim gtniraJiorta, ooa»-

moniatToat Bio in epiatola d. 9. Dk. 1741 acripU inienitur hue formula

it io epiitola 4. 6. Mali 1749 teripU hate

arf-t + a-'*-' - 2 Coa. Arcj-io.

Vide Corr«j»noo«t math, H j>J>ys. fkWtt por P. H.Km, SL-PeUrabourg 1848, 1 1, p. 110 ft 1fI

;

Ltcmtui £iuu Optra omnia, eeriee HI. Confer atUm Commentalionem 170 nota 1 p. 16

laodaUm, imprimii § 90 et 91. A. K.
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tion of the three-body problem, received his special

attention. The "Theoria motus planetarum et come-
tarum" (1774) is a treatise on celestial mechanics.
Related to this work was Euler's study of the attraction

of ellipsoids (1738).

There are books by Euler on hydraulics, on ship
construction, on artillery. In 1769-71 there appeared
three tomes of a "Dioptrica" with a theory of the

passage of rays through a system of lenses. In 1739
appeared his new theory of music, of which it has been
said that it was too musical for mathematicians and
too mathematical for musicians. Euler's philosophical

exposition of the most important problems of natural
science in his "Letters to a German Princess" (written

1760-61) remained a model of popularization.

The enormous fertility of Euler has been a continuous
source of surprise and admiration for everyone who has
attempted to study his work, a task not so difficult as it

seems, since Euler's Latin is very simple and his nota-
tion is almost modern—or perhaps we should better
say that our notation is almost Euler's! A long list can
be made of the known discoveries of which Euler
possesses priority, and another a list of ideas which are
still worth elaborating. Great mathematicians have
always appreciated their indebtedness to Euler. "Lisez
Euler," Laplace used to say to younger mathema-
ticians, "lisez Euler, c'est notre maitre a tous." And
Gauss, more ponderously, expressed himself: "The study
of Euler's works will remain the best school for the
different fields of mathematics and nothing else can
replace it." Riemann knew Euler's works well and some
of his most profound works have an Eulerian touch.

THE EIGHTEENTH CENTURY 175

Publishers might do worse than offer translations of

some of Euler's works together with modern commen-

taries.

5. It is instructive to point out not only some of

Ruler's contributions to science but also some of his

weaknesses. Infinite processes were still carelessly

handled in the Eighteenth Century and much of the

work of the leading mathematicians of that period

impresses us as wildly enthusiastic experimentation.

There was experimentation with infinite series, with

infinite products, with integration, with the use of

symbols such as 0, <*,y/-\. If many of Euler's

conclusions can be accepted today, there are others

concerning which we have reservations. We accept, for

instance, Euler's statement that log n has an infinity

of values which are all complex numbers, except when

n is positive, when one of the values is real. Euler came

to this conclusion in a letter to D'Alembert (1747) who

had claimed that log (- 1) = 0. But we cannot always

follow Euler when he writes that 1-3 + 5-7 +
... = 0, or when he concludes from

n + n* +
n

1 -n

1 l n
and l + n + J?

+ " ' " n - 1

that

...+±+ l-+l+n + n>+--- =0.
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Yet we must be careful and not criticize Euler too

hastily for his way of manipulating divergent series;

he simply did not always use some of our present tests

of convergence or divergence as a criterium for the

validity of his series. Much of his supposedly indiscrim-

inate work with series has been given a strictly rigorous

sense by modern mathematicians.

We cannot, however, be enthusiastic about Euler's

way of basing the calculus on the introduction of zeros

of different orders. An infinitesimally small quantity,

wrote Euler in his "Differential Calculus" of 1755, is

truly zero, a ± ndx = a,
1

dx ± (da:)"*
1 = dx, and

a y/dx + Cdx = a y/dx

"Therefore there exist infinite orders of infinitely small quan-
tities, which, though they all = 0, still have to be well distin-

guished among themselves, if we look at their mutual relation,

which is explained by a geometrical ratio."

The whole question of the foundation of the calculus

remained a subject of debate, and so did all questions

relating to infinite processes. The "mystical" period

in the foundation of the calculus (to use a term sug-

gested by Karl Marx) itself provoked a mysticism which
occasionally went far beyond that of the founding
fathers. Guido Grandi, a monk and professor at Pisa

known for his study of rosaces (r = sin n 9) and other
curves which resemble flowers, considered the formula

'This formula reminds us of a statement ascribed to Zeno by
Simpliciua: "That which, being added to another, does not make
it greater, and being taken away from another, does not make it

lass, is nothing".
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1=1-1 + 1-1 + 1

z

= (l - D + (i - D + (i - o+ ••

=0+0+0+ ••

as the symbol for Creation from Nothing. He obtained

the result 1/2 by considering the case of a father who

bequeathes a gem to his two sons who each may keep

the bauble one year in alternation. It then belongs to

each son for one half.

Euler's foundation of the calculus may have had its

weakness, but he expressed his point of view without

vagueness. D'Alembert, in some articles of the '* Ency-

clopedic," attempted to find this foundation by other

means. Newton had used the term "prime and ultimate

ratio" for the "fluxion," as the first or last ratio of two

quantities just springing into being. D'Alembert re-

placed this notion by the conception of a limit. One

quantity he called the limit of another when the second

approaches the first nearer than by any given quantity.

"The differentiation of equations consists simply in

finding the limits of the ratio of finite differences of two

variables included in the equation." This was a great

step ahead, as was D'Alembert's conception of in-

finites of different orders. However, his contemporaries

were not easily convinced of the importance of the new

step and when D'Alembert said that the secant becomes

the tangent when the two points of intersection are one,

it was felt that he had not overcome the difficulties in-

herent in Zeno's paradoxes. After all, does a variable

quantity reach its limit? or does it never reach it?
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We have already referred to Bishop Berkeley's crit-

icism of Newton's fluxions. George Berkeley, first dean
of Derry, after 1734 Bishop of Cloyne in S. Ireland—
and from 1729 to 1731 a resident of Newport R. I.—
is primarily known for his extreme idealism ("esse est

percipi"). He resented the support which Newtonian
science gave to materialism and he attacked the theory
of fluxions in the "Analyst" of 1734. He derided the
infinitesimals as "ghosts of departed quantities"; if x
receives an increment o, then the increment of x",

divided by o, is nx'-
1 + n(n ~

2

l) *-* o + . . . . This

is obtained by supposing o different from zero. The
fluxion of x", nx"~', however, is obtained by taking o

as equal to zero, when the hypothesis is suddenly
shifted, since o was supposed to be different from zero.

This was the "manifest sophism," which Berkeley dis-

covered in the calculus, and he believed that its correct

results were obtained by a compensation of errors.

Fluxions were logically unaccountable. "But he Who
can digest a second or . ird Fluxion, a second or third

Difference," Berkeley exclaimed to the "infidel mathe-
matician" whom he addressed (Halley), "need not,.tne-

thinks, be squeamish about any Point in Divinity."

It has not been the only case in which a critical difficulty

in a science has been used to strengthen an idealist

philosophy.

John Landen, a self-taught British mathematician
whose name is preserved in the theory of elliptic inte-

grals, tried to overcome the basic difficulties in the
calculus in his own way. In the "Residual analysis"

(1764) he met Berkeley's criticism by avoiding infini-
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tesimals altogether; the derivative of x\ for instance,

was found by changing x into x, ,
after which

=LzlI = x\ + Xx, + x*

X\ — x

becomes 3** when x = x, . Since this procedure involves

infinite series when the functions are more complicated,

Landen's method has some affinity to the later alge-

braic" method of Lagrange.

6 Although Euler was incontestably the leading

mathematician of this period, France continued to pro-

duce work of great originality. Here, more than in any

other country, mathematics was conceived as the science

which was to bring Newton's theory to greater per-

fection. The theory of universal gravitation had great

attraction for the philosophers of the Enlightenment,

who used it as a weapon in their struggle against the

remnants of feudalism. The Catholic Church had placed

Descartes on the index in 1664, but by 1700 his theories

had become fashionable even in conservative circles.

The question of Newtonianism versus CartesianiBm be-

came for a while a topic of the greatest interest not only

in learned circles but also in the salons. Voltaire s

"Lettres sur les Anglais" (1734) did much to introduce

Newton to the French reading public; Voltaire s friend

Mme. Du Chatelet even translated the " Principia" into

French (1759). A particular point of contention be-

tween the two schools was the figure of the earth. In

the cosmogony favored by the Cartesians the earth

elongated at the poles; Newton's theory required that

it be flattened. The Cartesian astronomers Cassini (Jean
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Dominique the father and Jacques the son; the father
known in geometry because of "Cassini's oval," 1680)
had measured an arc of the meridian in France between
1700 and 1720 and vindicated the Cartesian conclusion.
A controversy arose in which many mathematicians
participated. An expedition was sent in 1735 to Peru,
followed in 1736-37 by one under the direction of Pierre
De Maupertuis to the Tornea in Lapland in order to
measure a degree of longitude. The result of both ex-
peditions was a triumph for Newton's theory, as well
as for Maupertuis himself. The now famous "grand
aplatisseur" ("grand flattener") became president of
the Berlin Academy and basked for many years in the
sun of his fame at the court of Frederick the Great.
This lasted until 1750 when he entered into a spirited
controversy with the Swiss mathematician Samuel
Konig concerning the principle of least action in
mechanics, perhaps already indicated by Leibniz. Mau-
pertuis was looking, as Fermat had done before and
Einstein has done after him, for some general principle
by which the laws of the universe could be unified.
Maupertuis' formulation was not clear, but he defined
as his "action" the quantity mvs (m = mass, v » ve-
locity, s - distance) ; he combined with it a proof of
the existence of God. The controversy was brought to
a climax when Voltaire lampooned the unhappy presi-
dent in the "Diatribe du docteur Akakia, M^decin du
pape" (1752). Neither the king's support nor Euler's
defense could bring succor to Maupertuis' sunken
spirits, and the deflated mathematician died not long
afterwards in Basle in the home of the Bernoullis.

Euler restated the principle of least action in the

form that / mvds must be a minimum; moreover he did

not indulge in Maupertuis' metaphysics. This placed

the principle on a sound basis, where it was used by

Lagrange
1

and later by Hamilton. The use of the

"Hamiltonian" in modern mathematical physics illus-

trates the fundamental character of Euler's contribu-

tion to the Maupertuis-Konig controversy.

Among the mathematicians who went with Mauper-

tuis to Lapland was Alexis Claude Clairaut. Clairaut, at

eighteen years of age, had published the "Recherches

sur les courbes a double courbure," a first attempt to

deal with the analytical and differential geometry of

space curves. On his return from Lapland Clairaut

published his "Theorie de la figure de la tcrre" (1743),

a standard work on the equilibrium of fluids and the

attraction of ellipsoids of revolution. Laplace could only

improve on it in minor details. Among its many results

is the condition that a differential Mdx + Ndy be exact.

This book was followed by the "Theorie de la lune"

(1752), which added material to Euler's theory of the

moon's motion and the problem of three bodies in

general. Clairaut also contributed to the theory of line

integrals and of differential equations; one of the types

which he considered is known as Clairaut's equation

and offered one of the first known examples of a singular

solution.

7. The intellectual opposition to the "ancien regime"

centered after 1750 around the famous "Encyclop6die,"

'See E. Mach, The Science of Mechanics (Chicago, 1893), p.

364.
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28 vols. (1751-1772). The editor was Denis Diderot,

under whose leadership the Encyclopedia presented a

detailed philosophy of the Enlightenment. Diderot's

knowledge of mathematics was not inconsiderable', but

the leading mathematician of the Encyclopedists was

Jean Le Rond D'Alembert, the natural son of an aristo-

cratic lady, left as a foundling near the church of

St. Jean Le Rond in Paris. His early brilliance facilitated

his career; in 1754 he became "secretaire perpetuel" of

the French Academy and as such the most influential

man of science in France. In 1743 appeared his "Traits

de dynamique" which contains the method of reducing

the dynamics of solid bodies to statics, known as

"D'Alembert's principle." He continued to write on

many applied subjects, especially on hydrodynamics,

lThere exists a widely quoted story about Diderot and Euler

according to which Euler, in a public debate in St. Petersburg,

succeeded in embarrassing the freethinking Diderot by claiming

to possess an algebraic demonstration of the existence of God:

"Sir, (o + 6")/n - x; hence God exists, answer please!" This is

a good example of a bad historical anecdote, since the value of an

anecdote about an historical person lies in its faculty to illustrate

certain aspects of his character; this particular anecdote serves

to obscure both the character of Diderot and of Euler. Diderot

knew his mathematics and had written on involutes and prob-

ability, and no reason exists to think that the thoughtful Euler

would have behaved in the asinine way indicated. The story seems

to have been made up by the English mathematician De Morgan

(1806-73). See L. G. Krakeur—R. L. Krueger, Isis 31(1940)

431-432; also 33 (1941) 219-231. It is true that there was in the

Eighteenth Century occasional talk about the possibility of an

algebraic demonstration of the existence of God; Maupertuis

indulged in one, see Voltaire's "Diatribe". Oeuvres 41 (1821 ed.)

pp. 19, 30. See also B. Brown, Am. Math. Monthly 49 (1944).

JEAN LE ROND D'ALEMBERT (1717-17S3)
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aerodynamics, and the three-body problem. In 1747

appeared his theory of vibrating strings which made

him together with Daniel Bernoulli the founder of the

theory of partial differential equations. Where D'Alem-

bert and Euler solved the equation z lt = fc

2
z„ by means

of the expression z = f(x + kt) + <p(x — kt), Bernoulli

solved it by means of a trigonometric series. There

remained grave doubts concerning the nature of this

solution; D'Alembert believed that the initial form of

the string could only be given by a single analytical

expression, while Euler thought that "any" continuous

curve would do. Bernoulli believed, contrary to Euler,

that his series solution was perfectly general. The full

explanation of the problem had to wait until 1824 when

Fourier removed the doubts concerning the validity of

a trigonometric series as the representation of "any"

function.

D'Alembert was a facile writer on many subjects,

including even fundamental questions in mathematics.

We mentioned his introduction of the limit conception.

The "fundamental" theorem in algebra is sometimes

called D'Alembert's theorem because of his attempt at

proof (1746) ; and D'Alembert's "paradox" in the theory

of probability shows that he also thought about the

foundations of this theory—if not always very success-

fully.

The theory of probabilities made rapid advances in

this period, mainly by further elaboration of the ideas

of Fermat, Pascal, and Huygens. The "Ars conjec-

tandi" was followed by several other texts, among them

"The Doctrine of Chances" (1716) written by Abraham
De Moivre, a French Huguenot who settled in London
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after the revocation of the Edict of Nantes (1685) and

earned a living by private tutoring. De Moivre's name

is attached to a theorem in trigonometry, which in

its present form (cos <p + i sin ip)° = cos nip + i sin n-p

appears first in Euler's " Introductio." In a paper pub-

lished in 1733 he derived the normal probability func-

tion as an approximation to the binomial law and gave

a formula equivalent to that of Stirling. James Stirling,

an English mathematician of the Newtonian school,

published his series in 1730.

The many lotteries and insurance companies which

were organized in this period interested many mathe-

maticians, including Euler, in the theory of probabilities.

It led to attempts to apply the doctrine of chances to

new fields. The Comte De Buffon, noted as the author

of a natural history in 36 delightful volumes and the

famous discourse on style (1753 : "le style est de l'homme

mfime") introduced in 1777 the first example of a geo-

metrical probability. This was the so-called needle

problem which has appealed to the imagination of many
people because it allows the "experimental" determina-

tion of t by throwing a needle on a plane covered with

parallel and equidistant lines and counting the number

of times the needle hits a line.

To this period belong also the attempts to apply the

theory of probability to man's judgment; for instance,

by computing the chance that a tribunal can arrive

at a true verdict if to each of the different witnesses

a number can be given expressing the chance that he

will speak the truth. This curious " probability des juge-

ments," with its distinct flavor of Enlightenment philos-

ophy, was prominent in the work of the Marquis De
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Condorcet; it reappeared in Laplace and even in Poisson

(1837).

8. De Moivre, Stirling, and Landen were good repre-

sentatives of English Eighteenth Century mathema-

ticians. We must report on a few more, though none of

them reached the height of their continental colleagues.

The tradition of the venerated Newton rested heavily

upon English science and the clumsiness of his notation

as compared to that of Leibniz made progress difficult.

There were deep-lying social reasons why English math-

ematicians refused to be emancipated from Newtonian

fluxional methods. England was in constant commercial

wars with France and developed a feeling of intellectual

superiority which was fostered not only by its victories

in war and trade but also by the admiration in which the

continental philosophers held its political system. Eng-

land became the victim of its own supposed excellence.

An analogy exists between the mathematics of Eight-

eenth Century England and of late Alexandrian an-

tiquity. In both cases progress was technically impeded

by an inadequate notation, but reasons for the self-

satisfaction of the mathematicians were of a deeper

lying social nature.

The leading English—or, rather, English speaking

—

mathematician of this period was Colin Maclaurin,

professor at the University of Edinburgh, a disciple of

Newton with whom he was personally acquainted. His

study and extension of fluxional methods, of curves

of second and higher order, and of the attraction of

ellipsoids run parallel with contemporary efforts of

Clairaut and Euler. Several of Maclaurin's theorems
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occupy a place in our theory of plane curves and our

projective geometry. In his "Geometria organica"

(1720) we find the observation known as Cramer's

paradox that a curve of the nth order is not always

determined by 1/2 n (n + 3) points, so that nine points

may not uniquely determine a cubic while ten would

be too many. Here we also find cinematical methods to

describe plane curves of different degrees. Maclaurin's

"Treatise of Fluxions" (2 vols., 1742)—written to de-

fend Newton against Berkeley—is difficult to read be-

cause of the antiquated geometrical language, which is

in sharp contrast with the ease of Euler's writing. Mac-

laurin used to obtain Archimedian rigor. The book con-

tains Maclaurin's investigations on the attraction of

ellipsoids of revolution and his theorem that two such

ellipsoids, if they are confocal, attract a particle on the

axis or in the equator with forces proportional to their

volumes. In this "Treatise" Maclaurin also deals with

the famous "series of Maclaurin."

This series, however, was no new discovery, since it

had appeared in the"Methodus incrementorum" (1715)

written by Brook Taylor, for a while secretary of the

Royal Society. Maclaurin fully acknowledged his debt

to Taylor. The series of Taylor is now always given in

Lagrange's notation

:

fix + h) = f(x) + h /'(*) + £ fix)+ ;

Taylor explicitly mentions the series for x = 0, which

many college texts still insist on naming "Maclaurin's

series." Taylor's derivation did not include convergence

considerations, but Maclaurin made a beginning with
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such considerations—he even had the so-called integral

test for infinite series. The full importance of Taylor's

series was not recognized until Euler applied it in his

differential calculus (1755). Lagrange supplied it with

the remainder and used it as the foundation of his theory

of functions. Taylor himself used his series for the

integration of some differential equations.

10. Joseph Louis Lagrange was born in Turin of

Italian-French ancestry. At nineteen years of age he

became professor of mathematics in the artillery school

of Turin (1755). In 1766, when Euler left Berlin for

St. Petersburg, Frederick the Great invited Lagrange

to come to Berlin, accompanying his invitation with a

modest message which said that "it is necessary that

the greatest geometer of Europe should live near the

greatest of kings." Lagrange stayed at Berlin until the

death of Frederick (1786) after which he went to Paris.

During the Revolution he assisted in reforming weights

and measures; later he became professor, first at the

Ecole Normale (1795), then at the Ecole Polytechnique

(1797).

To Lagrange's earliest works belong his contributions

to the calculus of variations. Euler's memoir on this

subject had appeared in 1755. Lagrange observed that

Euler's method had "not all the simplicity which is

desirable in a'subject of pure analysis." The result was

Lagrange's purely analytical calculus of variations

(1760-61), which is not only full of original discoveries

but also has the historical material well arranged and

assimilated—something quite typical of all Lagrange's

work. Lagrange immediately applied his theory to prob-

JOSKI'll LOUIS LAGRANGB (1736-1813)

14
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lems of dynamics, in which he made full use of Euler's

formulation of the principle of least action, the result

of the lamentable "Akakia" episode. Many of the

essential ideas of the " M6caniquc analytique" thus date

back to Lagrange's Turin days. He also contributed to

one of the standard problems of his day, the theory of

the moon. He gave the first particular solutions of the

three-body problem. The theorem of Lagrange states

that it is possible to start three finite bodies in such a

manner that their orbits are similar ellipses all described

in the same time (1772). In 1767 appeared his memoir

"Sur la resolution des Equations numeViqucs" in which

he presented methods of separating the real roots of an

algebraic equation and of approximating them by means

of continued fractions. This was followed in 1770 by

the "Reflexions sur la resolution algebrique des Equa-

tions" which dealt with the fundamental question of

why the methods useful to solve equations of degree

n :£ 4 are not successful for n > 4. This led Lagrange

to rational functions of the roots and their behavior

under the permutations of the roots; the procedure

which not only stimulated Ruffini and Abel in their

work on the case n > 4, but also led Galois to his theory

of groups. Lagrange also made progress in the theory

of numbers when he investigated quadratic residues and

proved, among many other theorems, that every integer

is the sum of four or less than four squares.

Lagrange devoted the second part of his life to the

composition of his great works, the "MEcanique ana-

lytique" (1788), the "Theorie des fonctions analytiques"

(1797), and its sequel, the "Lccons sur le calcul des

fonctions" (1801). The two books on functions were
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an attempt to give a solid foundation to the calculus

by reducing it to algebra. Lagrange rejected the theory

of limits as indicated by Newton and formulated by

D'Alembert. He could not well understand what hap-

pened when Ay/Ax. reaches its limit. In the words of

Lazarc Carnot, the "organisateur de la victoire" in the

French Revolution, who also worried about Newton's

method of infinitesimals:

"That method has the great inconvenience of considering

quantities in the state in which they cease, so to speak, to be

quantities; for though we can always well conceive the ratio of

two quantities, as long as they remain finite, that ratio offers to

the mind no clear and precise idea, as soon as its terms Income,

the one and the other, nothing at the same time
- '

1
.

Lagrange's method was different from that of his

predecessors. He started with Taylor's series, which he

derived with their remainder, showing in a rather naive

way that "any" function f(x) could be developed in

such a scries with the aid of a purely algebraic process.

Then the derivatives /'(x), f"(x), etc., were defined as

the coefficients h, h
3
, in the Taylor expansion of

f(x + h) in terms of h. (The notation f'{x), f"(x) is

due to Lagrange.)

Though this "algebraic" method of founding the

calculus turned out to be unsatisfactory and though

Lagrange gave insufficient attention to the convergence

of the scries, the abstract treatment of a function was a

considerable step ahead. Here appeared a first "theory

«L. Carnot, Reflexions sur la metaphysique du calcul infinitesi-

mal (5th ed.. Paris, 1881), p. 147, quoted by F. Cajori, Am. Math.

Monthly 22 (1915), p. 148.
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of functions of a real variable" with applications to a
large variety of problems in algebra and geometry.

Lagrange's "Mecanique analytique" is perhaps his

most valuable work and still amply repays careful

study. In his book, which appeared a hundred years

after Newton's "Principia," the full power of the newly

developed analysis was applied to the mechanics of

points and of rigid bodies. The results of Eulcr, of D'
Alembert, and of the other mathematicians of the

Eighteenth Century were assimilated and further de-

veloped from a consistent point of view. Full use of

Lagrange's own calculus of variations made the unifica-

tion of the varied principles of statistics and dynamics
possible—in statistics by the use of the principle of

virtual velocities, in dynamics by the use of D'Alem-
bert's principle. This led naturally to generalized coor-

dinates and to the equation of motion in their " Lagran-

gian" form:

_d ar _ ar =

Newton's geometrical approach was now fully dis-

carded; Lagrange's book was a triumph of pure analysis.

The author went so far as to stress in the preface:

"on ne trouvera point de figures dans cet ouvrage,

seulement des op6rations alggbriques."' It characterized

Lagrange as the first true analyst.

11. With Pierre Simon Laplace we reach the last of

'"No figures will be found in this work, only algebraic opera-

tions." The word "algebraic" instead of "analytic" is charac-

teristic.

PIERRE SIMON LAPLACE (1749-1827)
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the leading Eighteenth Century mathematicians. The
son of a small Normandy proprietor, he attended

classes at Beaumont and Caen, and through the aid of

D'Alembcrt became professor of mathematics at the

military school of Paris. He had several other teaching

and administrative positions and took part during the

Revolution in the organization of the Ecole Normale as

well as of the Ecole Polytcchnique. Napoleon bestowed

many honors upon him, but so did Louis XVIII. In

contrast to Monge and Carnot, Laplace easily shifted

his political allegiances and with it all was somewhat of

a snob; but this easy conscience enabled him to con-

tinue his purely mathematical activity despite all

political changes in France.

The two great works of Laplace which unify not only

his own investigations but all previous work in their

respective subjects are the "Thcorie analytique des

probabiliteV' (1812) and the "Mdcanique celeste" (5

vols., 1799-1825). Both monumental works were pre-

faced by extensive expositions in non-technical terms,

the "Essai philosophique sur les probability" (1814)

and the "Exposition cm systemc du monde" (179G).

This "exposition" contains the nebular hypothesis, in-

dependently proposed by Kant in 1755 (and even before

Kant by Swedenborg in 1734). The "M6canique
celeste" itself was the culmination of the work of New-
ton, Clairaut, D'Alembcrt, Eulcr, Lagrange, and La-

place on the figure of the earth, the theory of the moon,
the three body problem, and the perturbations of the

planets, leading up to the momentous problem of the

stability of the solar system. The name "Laplace's

equation"
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d
7V , d

7V , d*V

dx
3 + W +

dz
2 =

reminds us that potential theory is part of the "M6ca-

nique celeste." (The equation itself already had been

found by Euler in 1752 when he derived some of the

principal equations of hydrodynamics.) Around this five

tome opus cluster many anecdotes. Well-known is La-

place's supposed answer to Napoleon who tried to

tease him by the remark that God was not mentioned

in his book, "Sire, je n'avais pas besoin de cctte hy-

pothese."
1 And Nathaniel Bowditch of Boston who

translated four volumes of Laplace's work into English

has remarked: "I never came across one of Laplace's

'Thus it plainly appears' without feeling sure that I

have hours of hard work before me to fill up the chasm

and find out and show how it plainly appears." Hamil-

ton's mathematical career began by finding a mistake in

Laplace's "Mexanique celeste." Green, reading Laplace,

received the idea of a mathematical theory of electricity.

The "Essai philosophique sur les probabilites" is a

very readable introduction to the theory of probabil-

ities; it contains Laplace's"negative" definition of prob-

abilities by postulating "equally likely events":

"The theory of chance consists in the reduction of all events of

the same kind to a certain number of equally likely cases, that are

cases such that we are equally undecided about their existence,

and to determine the number of cases which arc favorable to the

event of which we seek the probability."

Questions concerning probability appear, according

"'Sire, I did not need this hypothesis."
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to Laplace, because we are partly ignorant and partly

knowing. This led Laplace to his famous statement
which summarizes the Eighteenth Century interpreta-

tion of mechanical materialism

:

"An intelligence which, for a given instant, knew all the forces

by which nature is animated and the respective position of the
beings which compose it , and which besides was large enough to

submit these data to analysis, would embrace in the same formula
the motions of the largest bodies of the universe and those of the

lightest atom: nothing would be uncertain to it, and the future

as well as the past would be present to its eyes. Human mind
offers a feeble sketch of this intelligence in the perfection which
it has been able to give to Astronomy."

The standard text itself is so full of material that

many later day discoveries in the theory of probabilities

can already be found in Laplace.
1 The stately tome

contains an extensive discussion of games of chance
and of geometrical probabilities, of Bernoulli's theorem
and of its relation to the normal integral, and of the
theory of least squares invented by Legcndre. The lead-

ing idea is the use of the "Fonctions generatrices," of

which Laplace shows the power for the solution of

difference equations. It is here that the "Laplace trans-

form" is introduced, which later became the key to the

Heavisidc operational calculus. Laplace also rescued
from oblivion and reformulated a theory sketched by
Thomas Baycs, an obscure English clergyman, which
was posthumously published in 1763-64. This theory

became known as the theory of inverse probabilities.

E. C. Molina, The Theory of Probability: Some comments on
Laplace's Thiorie analytique, Bull. Am. Math. Soc. 36 (1930)

pp. 369-392.

,ii:an ktiknxk mostivi.a (1725-1799)
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12. It is a curious fact that toward the end of the
century some of the leading mathematicians expressed
the feeling that the field of mathematics was somehow
exhausted. The laborious efforts of Euler, Lagrange,
D'Alembert, and others had already led to the most
important theorems; the great standard texts had placed
them, or would soon place them, in their proper setting;

the few mathematicians of the next generation would
only find minor problems to solve. "Ne vous scmble-t-il

pas que la haute geometric va un pcu k decadence?"
wrote Lagrange to D'Alembert in 1772. "Elle n'a d'

autre soutien que vous et M. Euler.'" Lagrange even
discontinued working in mathematics for a while. D'
Alcmbert had little hope to give. Arago, in his " Eloge of

Laplace" (1842) later expressed a sentiment which may
help us to understand this feeling:

"Five geometers—Clairaut, Euler, D'Alembert, Lagrango and
Laplace—shared among them the world of which Newton had
revealed the existence. They explored it in all directions, pene-
trated into regions believed inaccessible, pointed out countless
phenomena in those regions which observation had not yet de-
tected, and finally—and herein lies their imperishable glory

—

they brought within the domain of a single principle, a unique
law, all that is most subtle and mysterious in the motions of the
celestial bodies. Geometry also had the boldness to dispose of
the future; when the centuries unroll themselves they will scru-
pulously ratify the decisions of science."

Arago's oratory points to the main source of this

'"Does it not seem to you that the sublime geometry tends to
become a little decadent? She has no other support than you and
Mr. Euler." "Geometry" in Eighteenth Century French is used
for mathematics in general.
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"fin de siecle" pessimism, which consisted of the tend-

ency to identify the progress of mathematics too much

with that of mechanics and astronomy. From the times

of ancient Babylon until those of Euler and Laplace

astronomy had guided and inspired the most sublime

discoveries in mathematics; now this development

seemed to have reached its climax. However, a new

generation, inspired by the new perspectives opened by

the French Revolution and the flowering of the natural

sciences, was to show how unfounded this pessimism

was. This great new impulse came only in part from

France; it also came, as often in the history of civiliza-

tion, from the periphery of the political and economical

centers, in this case from Gauss in Gottingon.
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CHAPTER VIII

The Nineteenth Century

1. The French Revolution and the Napoleonic period

created extremely favorable conditions for the further

growth of mathematics. The way was open for the In-

dustrial Revolution on the continent of Europe. It

stimulated the cultivation of the physical sciences; it

created new social classes with a new outlook on life,

interested in science and in technical education. The

democratic ideas invaded academic life; criticism rose

against antiquated forms of thinking; schools and uni-

versities had to be reformed and rejuvenated.

The new and turbulent mathematical productivity

was not primarily due to the technical problems raised

by the new industries. England, the heart of the in-

dustrial revolution, remained mathematically sterile for

several decades. Mathematics progressed most healthily

in France and somewhat later in Germany, countries

in which the ideological break with the past was most

sharply felt and where sweeping changes were made, or

had to be made, to prepare the ground for the new

capitalist economic and political structure. The new

mathematical research gradually emancipated itself

from the ancient tendency to see in mechanics and

astronomy the final goal of the exact sciences. The

pursuit of science as a whole became even more de-

tached from the demands of economic life or of warfare.

The specialist developed, interested in science for its

own sake. The connection with practice was never

201
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entirely broken but it often became obscured. A division

between "pure" and "applied" mathematics accom-

panied the growth of specialization.
1

The mathematicians of the Nineteenth Century were

no longer found around royal courts or in the salons

of the aristocracy. Their chief occupation consisted no

longer in membership in a learned academy; they were

usually employed by universities or technical schools

and were teachers as well as investigators. The Bcr-

noullis, Lagrange, and Laplace had done occasional

teaching. Now the teaching responsibility increased;

mathematics professors became educators and exam-

iners of the youth. The internationalism of previous

centuries tended to be undermined by the growing

relationship between the scientists of each nation,

The difference in approach found its classical expression in the

remark by Jacobi on the opinions of Fourier, who still represented

the utilitarian approach of the Eighteenth Century: "II est vrai

que Monsieur Fourier avait l'opinion que le but principal des

mathematiques 6tait l'utilite publique et l'explication des phe-

nomencs naturels; mais un philosophe comme lui aurait du

savoir que le but unique de la science, e'est l'honncur dc I'csprit

humain, ct que sous ce litre une question de nombre vaut autant

qii'tine question du systemc du monde." ("It is true that Mr.

Fourier believed that the main end of mathematics was public

usefulness and the explanation of the phenomena in nature, but

such a philosopher as he was should have known that the sole

end of science is the honor of the human mind, and that from

this point of view a question concerning number is as important

as a question concerning the system of the world.") In a letter to

Legendre 1830, Werke I p. 454 Gauss represented a synthesis

of both opinions; he freely applied mathematics to astronomy,

physics, and geodesy, but considered at the same time mathe-

matics the queen of the sciences, and arithmetic the queen of

mathematics.
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though international exchange of opinion did remain.

Scientific Latin was gradually replaced by the national

languages. Mathematicians began to work in specialized

fields; and while Leibniz, Euler, D'Alembert can be

described as "mathematicians" (as " geometres" in the

Eighteenth Century meaning of the word), we think of

Cauchy as an analyst, of Cayley as an algebrist, of

Steiner as a geometer (even a " pure" geometer) and of

Cantor as a pioneer in point sets. The time was ripe for

"mathematical physicists" followed by men learned in

"mathematical statistics" or "mathematical logic".

Specialization was only broken on the highest level of

genius; and it was from the works of a Gauss, a

Riemann, a Klein, a Poincare' that Nineteenth Century

mathematics received its most powerful impetus.

2. On the dividing line between Eighteenth and

Nineteenth Century mathematics towers the majestic

figure of Carl Friedrich Gauss. He was born in the

German city of Brunswick, the son of a day laborer. The

duke of Brunswick gracefully recognized in young Gauss

an infant prodigy and took charge of his education. The

young genius studied from 1795-98 at Gottingen and in

1799 obtained his doctor's degree at Helmstadt. From

1807 until his death in 1855 he worked quietly and

undisturbed as the director of the astronomical observa-

tory and professor at the university of his alma mater.

His comparative isolation, his grasp of "applied" as well

as "pure" mathematics, his preoccupation with astron-

omy and his frequent use of Latin have the touch of the

Eighteenth Century, but his work breathes the spirit

of a new period. He stood, with his contemporaries
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Kant, Goethe, Beethoven, and Hegel, on the side lines

of a great political struggle raging in other countries,

but expressed in his own field the new ideas of his age

in a most powerful way.

Gauss' diaries show that already in his seventeenth

year he began to make startling discoveries. In 1795,

for instance, he discovered independently of Euler the

law of quadratic reciprocity in number theory. Some of

his early discoveries were published in his Helmstadt

dissertation of 1799 and in the impressive " Disquisi-

tiones arithmeticae" of 1801. The dissertation gave the

first rigorous proof of the so-called fundamental theorem

of algebra, the theorem that every algebraic equation

with real coefficients has at least one root and hence

has n roots. The theorem itself goes back to Albert

Girard, the editor of Stevin's works ("Invention nou-

velle en algebrc", 1629), D'Alembert had tried to give

a proof in 1746. Gauss loved this theorem and later

gave two more demonstrations, returning in 1846 to

his first proof. The third demonstration (1816) used

complex integrals and showed Gauss' early mastery of

the theory of complex numbers.

The " Disquisit iones arithmeticae" collected all the

masterful work in number theory of Gauss' predecessors

and enriched it to such an extent that the beginning of

modern number theory is sometimes dated from the

publication of this book. Its core is the theory of

quadratic congruences, forms, and residues; it culmi-

nates in the law of quadratic residues, that "theorema

aureum" of which Gauss gave the first complete proof.

Gauss was as fascinated by this theorem as by the

fundamental theorem of algebra and later published five

15
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more demonstrations; one more was found after his

death among his papers. The " Disquisitiones" also con-

tain Gauss' studies on the division of the circle, in other

words, on the roots of the equation x" = 1 . They led up
to the remarkable theorem that the sides of the regular

polygon of 17 sides (more general, of n sides, n =
2" + 1, j> = 2", n prime, k = 0, 1, 2, 3 • • •) can be con-

structed with compass and ruler alone, a striking ex-

tension of the Greek type of geometry.

Gauss' interest in astronomy was aroused when, on
the first day of the new century, on Jan. 1, 1801,

Piazzj in Palermo discovered the first planetoid, which

was given the name of Ceres. Since only a few observa-

tions of the new planetoid could be made the problem

arose to compute the orbit of a planet from a smaller

number of observations. Gauss solved the problem com-

pletely; it leads to an equation of degree eight. When in

1802, Pallas, another planetoid, was discovered, Gauss
began to interest himself in the secular perturbations of

planets. This led to the "Theoria motus corporum
coelestium" (1809), to his paper on the attraction of

general ellipsoids (1813), to his work on mechanical

quadrature (1814), and to his study of secular perturba-

tions (1818). To this period belongs also Gauss' paper

on the hypergeometric series (1812), which allows a

discussion of a large number of functions from a single

point of view. It is the first systematic investigation of

the convergence of a series.

After 1820 Gauss began to be actively interested in

geodesy. Here he combined extensive applied work in

triangulation with his theoretical research. One of the
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results was his exposition of the method of least squares

(1821, 1823), already the subject of investigation by

Legcndrc (1806) and Laplace. Perhaps the most im-

portant contribution of this period in Gauss' life was the

surface theory of the "Disquisitiones generales circa

superficies curvas" (1827), which approached its sub-

ject in a way strikingly different from that of Mongc.

Here again practical considerations, now in the field

of higher geodesy, were intimately connected with subtle

theoretical analysis. In this publication appeared the

so-called intrinsic geometry of a surface, in which

curvilinear coordinates arc used to express the linear

element ds in a quadratic differential form ds
3 =

Edit? + Fdu dv -f Gdv
3
. There was also a climax, the

"thcorema egregium", which states that the total curva-

ture of the surface depends only on E, F, and G and

their derivatives, and thus is a bending invariant. But

Gauss did not neglect his first love, the "queen of

mathematics," even in this period of concentrated

activity on problems of geodesy, for in 1825 and 1831

appeared his work on biquadratic residues. It was a

continuation of his theory of quadratic residues in the

"Disquisitiones arithmcticae," but a continuation with

the aid of a new method, the theory of complex numbers.

The treatise of 1831 did not only give an algebra of

complex numbers, but also an arithmetic. A new prime

number theory appeared, in which 3 remains prime but

5 = (1 + 2t) (1 - 2i) is no longe a prime. This new

complex number theory clarified many dark points in

arithmetic so that the quadratic law of reciprocity

became simpler than in real numbers. In this paper
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Gauss dispelled forever the mystery which still sur-

rounded complex numbers by his representation of them
by points in a plane.

1

A statue in Gottingen represents Gauss and his

younger colleague Wilhelm Weber in the process of

inventing the electric telegraph. This happened in 1833-

34 at a time when Gauss' attention began to be drawn
toward physics. In this period he did much experimental

work on terrestrial magnetism. But he also found time

for a theoretical contribution of the first importance

—

his "Allgemcine Lehrsatze" on the theory of forces

acting inversely proportional to the square of the

distance (1839, 1840). This was the beginning of po-

tential theory as a separate branch of mathematics
(Green's paper in 1828 was practically unknown at that

time) and it led to certain minimal principles concerning

space integrals, in which we recognize "Dirichlet's"

principle. For Gauss the existence of a minimum was
evident; this later became a much debated question

which was finally solved by Hilbert.

Gauss remained active until his death in 1855. In

his later years he concentrated more and more on
applied mathematics. His publications, however, dc
not give an adequate picture of his full greatness. The
appearance of his diaries and of some of his letters has

shown that he kept some of his most penetrating

thoughts to himself. We now know that Gauss, as

early as 1800, had discovered elliptic functions and
around 1816 was in possession of non-euclidean geo-

'Comp. E. T. Bell, Gauss and the Early Development of Algebraic

Numbers, National Math. Magazine 18 (1944) pp. 188, 219.
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metry. He never published anything on these subjects;

indeed, only in some letters to friends did he disclose

his critical position toward attempts to prove Euclid's

parallel axiom. Gauss seems to have been unwilling

to venture publicly into any controversial subject. In

letters he wrote about the wasps who would then fly

around his ears and of the "shouts of the Boeotians"

that would be heard if his secrets were not kept. For

himself Gauss doubted the validity of the accepted

Kantian doctrine that space conception is euclidean a

priori ; for him the real geometry of space was a physical

fact to be discovered by experiment.

4. In his history of mathematics of the Nineteenth

Century Felix Klein has invited comparison between

Gauss and the twenty-five year older French mathema-

li.'ian Adrien Marie Legcndre. It is perhaps not en-

tirely fair to compare Gauss with any mathematician

except the very greatest; but this particular comparison

showshow Gauss' ideas were" in the air," since Legendre

in his own independent way worked on most subjects

which occupied Gauss. legendre taught from 1775 to

1780 at the military school in Paris and later filled

different government positions such as professor at the

Ecole Normalc, examiner at the Ecole Polytechnique,

and geodetic surveyor.

Like Gauss he did fundamental work on number

theory ("Essai sur les nombres," 1798 "Theorie des

nombres," 1830) where he gave a formulation of the

law of quadratic reciprocity. He also did important

work on geodesy and on theoretical astronomy, was as

assiduous a computer of tables as Gauss, formulated in
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1806 the method of least squares, and studied the

attraction of ellipsoids—even those which are not sur-

faces of revolution. Here he introduced the "Legendre"

functions. He also shared Gauss' interest in elliptic

and Eulerian integrals as well as in the foundations and

methods of Euclidean geometry.

Although Gauss penetrated deeper into the nature of

all these different fields of mathematics, Legendre pro-

duced works of outstanding importance. His compre-

hensive textbooks were for a long time authoritative,

especially his "Exercises du calcul int6gral" (3 vols,

1811-19) and his " Traits' des fonctions elliptiques et

des integrates euleriennes" (1827-32), still a standard

work. In his "Elements dc geometric" (1794) he broke

with the Platonic ideals of Euclid and presented a

textbook of elementary geometry based on the require-

ments of modern education. This book passed through

many editions and was translated into several lan-

guages; it has had a lasting influence.

5. The beginnings of the new period in the history of

French mathematics may perhaps be dated from the

establishment of military schools and academies, which

took place during the later part of the Eighteenth Cen-

tury. These schools, of which some were also founded

outside of France (Turin, Woolwich), paid considerable

attention to the teaching of mathematics as a part of

the training of military engineers. Lagrange started his

career at the Turin school of artillery; Legendre and La-

place taught at the military school in Paris, Monge at

Mezieres. Carnot was a captain of engineers. Napoleon's

interest in mathematics dates back to his student days
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at the military academies of Brienne and Paris. During
the invasion of France by the Royalist armies the need
of a more centralized instruction in military engineering

became apparent. This led to the foundation of the

Ecole Polytechnique of Paris (1794), a school which
soon developed into a leading institution for the study
of general engineering and eventually became the model
of all engineering and military schools of the early

Nineteenth Century, including West Point in the United
States. Instruction in theoretical and applied mathe-
matics was an integral part of the curriculum. Emphasis
was laid upon research as well as upon teaching. The
best scientists of France were induced to lend their

support to the school; many great French mathema-
ticians were students, professors, or examiners at the
Ecole Polytechnique.

1

The instruction at this institution, as well as at other
technical schools, required a new type of textbook. The
learned treatises for the initiated which were so typical

of Euler's period had to be supplemented by college

handbooks. Some of the best textbooks of the early
Nineteenth Century were prepared for the instruction

at the Ecole Polytechnique or similar institutions. Their
influence can be traced in our present day texts. A good
example of such a handbook is the "Trait6 du calcul

differentiel et du calcul integral" (2 vols., 1797) written
by Sylvestre Francois Lacroix, from which whole gen-
erations have learned their calculus. We have already
mentioned Legendre's books. A further example is

Monge's textbook of descriptive geometry, which still

is followed by many present day books on this subject.

Comp. C. G. J. Jacobi, Werke 7, p. 355 (lecture held in 1835).
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6. Gaspard Monge, the director of the Ecole Poly-

technique, was the scientific leader of the group of

mathematicians which were connected with this insti-

tute He had started his career as instructor at the

military academy of Mezieres (1768-1789), where his

lectures on fortification gave him an opportunity to

develop descriptive geometry as a special branch of

geometry. He published his lectures in the "Geom6trie

descriptive" (1795-1799). At Mdzieres he also began

to apply the calculus to space curves and surfaces, and

his papers on this subject were later published in the

"Application de l'analysc a la geometrie" (1809), the

first book on differential geometry, though not yet in

the form which is customary at present. Monge was one

of the first modern mathematicians whom we recognize

as a specialist: a geometer—even his treatment of

partial differential equations has a distinctly geometr

rical touch.

Through Monge's influence geometry began to flour-

ish at the Ecole Polyteehniquc. In Monge's descriptive

geometry lay the nucleus of projective geometry, and

his mastery of algebraic and analytical methods in their

application to curves and surfaces contributed greatly

to analytical and differential geometry. Jean Hachette

and Jean Baptiste Biot developed the analytical geo-

metry of conies and quadrics; in Biot's "Essai de

geometrie analytique" (1S02) we begin at last to recog-

nize our present textbooks of analytic geometry.

Monge's pupil, Charles Dupin, as a young naval engin-

eer in Napoleonic days, applied his teacher's methods to

the theory of surfaces, where he found the asymptotic

and conjugate lines. Dupin became a professor of



THE NINETEENTH CENTURY 215

MI<5>N<&IB

geometry in Paris and gained during his long life prom-

inence as a politician and industrial promoter as

well. The "indicatrix of Dupin" and the "cyclides of

Dupin" remind us of the early interests of this man,

whose "Developpementsdcgeora6trie" (1813) and"Ap-

plications dc g6om6tric" (1825) contain a great number

of interesting ideas.

The most original Monge pupil was Victor Poncelet.

Ho bad an opportunity to reflect on his teacher's

methods during 1813 when he lived an isolated existence

as a war prisoner in Russia after the defeat of Napole-

on's "grande armec." Poncelet was attracted by the

purely synthetic side of Monge's geometry and thus

was led to a mode of thinking already suggested two

centuries before by Uesargues. Poncelet became the

founder of projective geometry.

Poncelet's "Traite" des propriety projectives des

figures" appeared in 1822. This heavy volume contains

all the essential concepts underlying the new form of

geometry, such as cross ratio, pcrspectivity, projee-

tivity, involution, and even the circular points at in-

finity. Poncelet knew that the foci of a conic can be

considered as the intersections of the tangents at the

conic through these circular points. The "Traite" also

contains the theory of the polygons inscribed in one

conic and circumscribed to another one (the so-called

closure problem of Poncelet). Although this book was

the first full treatise on projective geometry, during the

next decades this geometry reached that degree of

perfection which made it a classical example of a well-

integrated mathematical structure.
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6. Monge, although a man of strict democratic prin-

ciples, stayed loyal to Napoleon, in whom he saw the
executor of the ideals of the Revolution. In 1815, when
the Bourbons returned, Monge lost his position and
soon afterwards died. The Ecole Polytechniquc, how-
ever, continued to flourish in Monge's spirit. The very
nature of the instruction made it difficult to separate

pure and applied mathematics. Mechanics received full

attention, and mathematical physics began at last to

emancipate itself from the "catoptrics" and the "diop-
trics" of the Ancients. Etienne Malus discovered the
polarization of light (1810) and Augustin Fresnel re-

established Huygens' undulatory theory of light (1821).

Andr6 Marie Ampere, who had done distinguished

work on partial differential equations, became after

1820 the great pioneer in electro-magnetism. These in-

vestigators brought many direct and indirect benefits

to mathematics: one example is Dupin's improvement
of Malus' geometry of light rays, which helped to mod-
ernize geometrical optics and also contributed to the
geometry of line congruences.

Lagrange's "MScanique analytique" was faithfully

studied and its methods tested and applied. Statics

appealed to Monge and his pupils because of its geo-

metrical possibilities, and several textbooks on statics

appeared in the course of the years, including one by
Monge himself (1788, many editions). The geometrical
element in statics was brought out in full by Louis
Poinsot, for many years a member of the French
superior board of public instruction. His "Elements de
statique" (1804) and "Theorie nouvelle de la rotation
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des corps" (1834) added to the conception of force that

of torque ("couple"), represented Euler's theory of

moments of inertia by means of the ellipsoid of in-

ertia, and analyzed the motion of this ellipsoid when the

rigid body moves in space or turns about a fixed point.

Poncelet and Coriolis gave a geometrical touch to La-

grange's analytical mechanics; both men, as well as

Poinsot, stressed the application of mechanics to the

theory of simple machines. The "acceleration of Cori-

olis", which appears when a body moves in an accel-

erated system, is an example of such a geometrical

interpretation of Lagrange's results (1835).

The most outstanding mathematicians connected

with the early years of the Ecole Polytechnique were—

apart from Lagrange and Monge—Simeon Poisson,

Joseph Fourier, and Augustin Cauchy. All three were

deeply interested in the application of mathematics to

mechanics and physics, all three were led by this interest

to discoveries in "pure" mathematics. Poisson's pro-

ductivity is indicated by the frequency in which his

name occurs in our textbooks: Poisson's brackets in

differential equations, Poisson's constant in elasticity,

Poisson's integral, and Poisson's equation in potential

theory. This "Poisson equation," AV = 4wp, was the

result of Poisson's discovery (1812) that Laplace's

equation, AV = 0, only holds outside of the masses;

its exact proof for masses of variable density was not

given until Gauss gave it in his " Allgcmeine Lehrsatze"

(183JM0). Poisson's "Trait6 de meumique" (1811) was

written in the spirit of Lagrange and Laplace but con-

tained many innovations, such as the explicit use of
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impulse coordinates, P, = dT/d'q<, which later inspired

the work of Hamilton and Jacobi. His book of 1837

contains "Poisson's law" in probability (see p. 145).

Fourier is primarily remembered as the author of the
"Thcorie analytique dc la chaleur" (1822). This is the

mathematical theory of heat conduction and, therefore,

is essentially the study of the equation AU = kdu/dt.

By virtue of the generality of its method this book
became the source of all modern methods in mathe-
matical physics involving the integration of partial dif-

ferential equations under given boundary conditions.

This method is the use of trigonometric series, which had
been the cause of discussion between Euler, D'Alembert,
and Daniel Bernoulli. Fourier made the situation per-

fectly clear. He established the fact that an "arbitrary"

function (a function capable of being represented by an
arc of a continuous curve or by a succession of suchArcs)
could be represented by a trigonometric series of the
form, S°-o (A n cos nax + B„ sin nax). Despite Euler's

and Bernoulli's observations the idea was so new and
startling at the time of Fourier's investigations that it is

said that when he stated his ideas in 1807 for the first

time, he met with the vigorous opposition of no one
other than Lagrange himself.

The "Fourier series" now became a well-established

instrument of- operation in the theory of partial differ-

ential equations with given boundary conditions. It also

received attention on its own merits. Its manipulation
by Fourier fully opened the question of what to under-
stand by a "function." This was one of the reasons why
Nineteenth Century mathematicians found it necessary
to look closer into questions concerning rigor of mathe-

matical proof and the foundation of mathematical con-

ceptions in general.
1 This task, in the specific case of

Fourier series, was undertaken by Dirichlet and Rie-

mann.

7. Cauchy's many contributions to the theory of light

and to mechanics have been obscured by the success of

his work in analysis, but we must not forget that with

Navier he belongs to the founders of the mathematical

theory of elasticity. His main glory is the theory of

functions of a complex variable and his insistence on

rigor in analysis. Functions of a complex variable had

already been constructed before, notably by D'Alem-

bert, who in a paper on the resistance of fluids of 1752

even had obtained what we now call the Cauchy-Ric-

mann equations. In Cauchy's hands complex function

theory emancipated from a tool useful in hydrodynam-

ics and aerodynamics into a new and independent field

of mathematical research. Cauchy's investigations on

this subject appeared in constant succession after 1814.

One of the most important of his papers is the " Memoire

sur les integrales denies, prises entre des limites imagi-

naires" (1825). In this paper appeared Cauchy's inte-

gral theorem with residues. The theorem that every

regular function /(z) can be expanded around each point

z = 2 in a series convergent in a circle passing through

the singular point nearest to z = 2» was published in

1831, the same year in which Gauss published his

arithmetical theory of complex numbers. Laurent's

>P. E. B. Jourdain, Note on Fourier's Influence on the Con-

ceptions of Mathematics, Proc. Intern. Congress of Mathem.

(CambridRe, 1912) II, pp. 526-527.
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extension of Cauchy's theorem on series was published

in 1843—when it was also in the possession of Weier-

strass. These facts show that Cauchy's theory did not

have to cope with professional resistance ; the theory of

complex functions was fully accepted from its very

beginning.

Cauchy, along with his contemporaries Gauss, Abel,

and Bolzano, belongs to the pioneers of the new insist-

ence on rigor in mathematics. The (eighteenth Century
had been essentially a period of experimentation, in

which results came pouring in with luxurious abund-
ance. The mathematicians of this age had not bothered

too much about the foundation of their work—"allez

en avant, et la foi vous viendra," D'Alembert is sup-

posed to have said. When they worried about rigor, as

Euler and Lagrange occasionally did, their arguments
were not always convincing. The time had now arrived

for a close concentration on the meaning of the results.

What was a "function" of a real variable, which showed
such different behavior in the case of a Fourier series

and in the case of a power scries? What was i(s relation

to the entirely different "function'1
of a complex vari-

able? These questions brought all (Ik; unsolved prob-

lems about the foundation of the calculus and the

existence of the potentially and the actually infinite

again into the foreground of mathematical thinking.
1

What Eudoxos had done in the period after the fall

of Athenian democracy, Cauchy and his meticulous

contemporaries began to accomplish in the period of

'P. E. B. Jourdain, The Origin of Cauchy's Conception of a
Definite Integral and of the Continuity of a Function, Isis I (1913)

pp. 661-703 (see also Bibl. Math. 6 (1905) pp. 190-207).

expanding industrialism. This difference of social setting

produced different results, and where Eudoxos success

had the tendency to stifle productivity, the success of

the modern reformers stimulated mathematical pro-

ductivity to a high degree. Cauchy and Gauss were fol-

lowed by Weierstrass and Cantor.

Cauchy gave the foundation of the calculus as we now

generally accept it in our textbooks. It can be found in

his "Cours d'analyse" (1821) and ^'R^medes
lecons donnecs a l'ccole royalc polytechmquc I (182<J).

Cauchy used D'Alembert's limit concept to define

the derivative of a function, and establish it on a firmer

foundation than his predecessors had been able to do.

Starting with the definition of a limit, Cauchy gave

examples such as the limit of sin a/a for a - 0. Then

he defined a "variable infiniment petite" as a variable

number which has zero for its limit; and then pos-

tulated that Ay and Ax "seront des quantites in-

Aw fix + i) - /(»)

finiment petites". He then wrote— =
{

and called the limit for i - 0, the "fraction derivee,

y
' ou /'(»." He placed i- ah, a an" infiiumcnt petite ,

and h a "quantity finic":

fix + ah) - fix) m fix + i)~ /(») h

a l

h was called the " differentiellc dc la fonction y - /(*)."

Furthermore, dy = dflx) = hf'(x);dx - h.

Cauchy used both Lagrange's notation and many ot

•Resume I (1823) Calcul differenticl, pp. 13-27. A strict

analysis of this procedure in M. Pasch, Mathematik am Vr^prung

(Leipzig. 1927) pp. 47-73.

16
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his contributions to real function theory without mak-

ing any concession to Lagrange's "algebraic" founda-

tion. The mean value theorem and the remainder of

the Taylor series were accepted as Lagrange had derived

them, but series were now discussed with due attention

to their convergence. Several convergence proofs in the

theory of infinite series are named after Cauchy. There

are definite steps in his books toward that "arith-

metization" of analysis which later became the core of

Weierstrass' investigations. Cauchy also gave the first

existence proof for the solution of a differential equation

and of a system of such equations (1836). In this way
Cauchy offered at last a beginning of an answer to that

series of problems and paradoxes which had haunted

mathematics since the days of Zcno, and he did this

not denying or ignoring them, but by creating a mathe-

matical technique in which it was possible to do them

justice.

Cauchy, like his contemporary Balzac with whom he

shared a capacity for an infinite amount of work, was

a legitimist and a royalist. Both men had such a deep

understanding of values that despite their reactionary

ideals much of their work has retained its fundamental

place. Cauchy abandoned his chair at the Ecole Poly-

technique after the Revolution of 1830 and spent some

years at Turin and Prague; he returned to Paris in 1838.

After 1848 he was allowed to stay and teach without

having to take the oath of allegiance to the new gov-

ernment. His productivity was so enormous that the

Paris Academy had to restrict the size of all papers

sent to the "Comptes Rendus" in order to cope with

Cauchy's output. It is told that he disturbed Laplace
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so greatly when he read his first paper on the converg-

ence of series to the Paris Academy that the great man

went back home to test the series in his "Mecanique

Celeste". He found, it seems, that no great errors had

been committed.

8. This Paris milieu with its intense mathematical

activity produced, around 1830, a genius of the first

order, who, comet-like, disappeared as suddenly as he

had appeared. Evariste Galois, the son of a small-town

mayor near Paris, was twice refused admission to the

Ecole Polytcchnique and succeeded at last in entering

the Ecole Normalc only to be dismissed. He tried to

make a living by tutoring mathematics, maintaining

at the same time an uneasy balance between his ardent

love for science and for democracy. Galois participated

as a republican in the Revolution of 1830, spent some

months in prison, and was soon afterwards killed in a

duel at the age of twenty-one. Two of the papers he

sent for publication got lost on the editor's desk; some

others were published long after his death. On the eve

of the duel, he wrote to a friend a summary of his dis-

coveries in the theory of equations. This pathetic docu-

ment, in which he asked his friend to submit his dis-

coveries to the leading mathematicians, ended with the

words:

"You will publicly ask Jacobi or Gauss to give their opinion

not on the truth, but on the importance of the theorems. After

this there will be, I hope, sonic people who will find it to their

advantage to decipher all this mess."

This mess ("ce gachis") contained no less than the
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From a rare sketch showing him aa he appeared shortly before
his fatal duel at the age of twenty-one
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theory of groups, the key to modern algebra and to

modern geometry. The ideas had already been antici-

pated to a certain extent by Lagrange and the Italian

Ruffini, but Galois had the conception of a complete

theory of groups. He expressed the fundamental proper-

ties of the transformation group belonging to the roots

of an algebraic equation and showed that the field of

rationality of these roots was determined by the group.

Galois pointed out the central position taken by in-

variant sub-groups. Ancient problems such as the tri-

section of the angle, the duplication of the cube, the

solution of the cubic and biquadratic equation, as well

as the solution of an algebraic equation of any degree

found their natural place in the theory of Galois. Galois'

letter, as far as we know, was never submitted to Gauss

or Jacobi. It never reached a mathematical public until

Liouville published most of Galois' papers in his

"Journal de mathematiques" of 1846, at which period

Cauchy had already begun to publish on group theory

(1844-46). It was only then that some mathematicians

began to be interested in Galois' theories. Full under-

standing of Galois' importance came only through

Camille Jordan's "Traitedes substitutions" (1870) and

the subsequent publications by Klein and Lie. Now

Galois' unifying principle has been recognized as one

of the outstanding achievements of Nineteenth Century

mathematics.
1

Galois also had ideas on the integrals of algebraic

functions of one variable, on what we now call Abelian

integrals. This brings his manner of thinking closer

'See G. A. Miller, History oj the Theory o] Groups to 1900.

Coll. Works I (1935) pp. 427-467.
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to that of Riemann. We may speculate on the possibility

that if Galois had lived, modern mathematics might

have received its deepest inspiration from Paris and
the school of Lagrange rather than from Gottingen and
the school of Gauss.

9. Another young genius appeared in the twenties,

Niels Henrik Abel, the son of a Norwegian country

minister. Abel's short life was almost as tragic as that

of Galois. As a student in Christiania he thought for a

while that he had solved the equation of degree five,

but he corrected himself in a pamphlet published in

1824. This was the famous paper in which Abel proved

the impossibility of solving the general quintic equation

by means of radicals—a problem which had puzzled

the mathematicians from the time of Bombelli and

Viete (a proof of 1799 by the Italian Paolo Rufnni

was considered by Poisson and other mathematicians

as too vague). Abel now obtained a stipend which en-

abled him to travel to Berlin, Italy, and France.

Tortured by poverty and consumption, shy and retiring,

the young mathematician established few personal con-

tacts and died (1829) soon after his return to his native

land.

In this period of travel Abel wrote several papers

which contain his work on the convergence of series,

on "Abelian" integrals, and on elliptic functions. Abel's

theorems in the theory of infinite series show that he
was able to establish this theory on a reliable founda-

tion. "Can you imagine anything more horrible than

to claim that = 1" - 2"
-f-

3" - 4" + etc., n being a

positive integer?" he wrote to a friend,and he continued

:

"There is in mathematics hardly a single infinite series of

which the sum is determined in a rigorous way" (letter to

Tlolmboe, 1826).

Abel's investigations on elliptic functions were con-

ducted in a short but exciting competition with Jacobi.

Gauss in his private notes had already found that the

inversion of elliptic integrals leads to single -valued,

doubly periodic functions, but he never published his

ideas. Legendre, who had spent so much effort on elliptic

integrals, had missed this point entirely and was deeply

impressed when, as an old man, he read Abel's dis-

coveries. Abel had the good luck to find a new periodical

eager to print his papers; the first volume of the

"Journal fiir die reine und angewandte Mathematik"

edited by Crelle contained no less than five of Abel's

papers. In the second volume (1827) appeared the first

part of his "Recherches sur les fonctions elliptiques,"

with which the theory of doubly periodic functions

begins.

We speak of Abel's integral equation and of Abel's

theorem on the sum of integrals of algebraic functions

which leads to Abelian functions. Commutative groups

are called Abelian groups, which indicates how close

Galois' ideas were related to those of Abel.

10. In 1829, the year that Abel died, Carl Gustav

Jacob Jacobi published his "Fundamenta nova theoriae

functionum ellipticarum." The author was a young

professor at the University of Konigsberg. He was the

son of a Berlin banker and a member of a distinguished

family; his brother Moritz in St. Petersburg was one of
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the earliest Russian scientists who experimented in

electricity. After studying in Berlin, Jacobi taught at

Konigsberg from 1826 to 1843. He then spent some time

in Italy trying to regain his health and ended his career

as a professor at the University of Berlin, dying in 1851

at the age of forty-six. He was a witty and liberal

thinker, an 'nspiring teacher, and a scientist whose
enormous energy and clarity of thought left few
branches of mathematics untouched.

Jacobi based his theory of elliptic functions on
four functions defined by infinite series and called

theta functions. The doubly periodic functions sn u,

en u and dn u are quotients of theta functions; they
satisfy certain identities and addition theorems very
much like the sine and cosine functions of ordinary
trigonometry. The addition theorems of elliptic func-
tions can also be considered as special applications of

Abel's theorem on the sum of integrals of algebraic

functions. The question now arose whether hyper-
elliptic integrals could be inverted in the way elliptic

integrals had been inverted to yield elliptic functions.
The solution was found by Jacobi in 1832 when he
published his result that the inversion could be per-
formed with functions of more than one variable. Thus
the theory of Abelian functions of p variables was born,
which became an important branch of Nineteenth
Century mathematics.

Sylvester has given the name "Jacobian" to the
functional determinant in order to pay respect to
Jacobi's work on algebra and elimination theory. The
best known of Jacobi's papers on this subject is his

"De formatione et proprietatibus determinantium"
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(1841), which made the theory of determinants the

common good of the mathematicians. The idea of the

determinant was much older—it goes back essentially

to Leibniz (1693), the Swiss mathematician Gabriel

Cramer (1750), and Lagrange (1773); the name is due

to Cauchy (1812). Y. Mikanii has pointed out that the

Japanese mathematician, Seki Kowa, had the idea of a

determinant sometime before 1683.
1

The best approach to Jacobi is perhaps through his

beautiful lectures on dynamics ("Vorlesungen liber

Dynamik"), published in 1866 after lecture notes from

1842-43. They are written in the tradition of the French

school of Lagrange and Poisson but have a wealth of

new ideas. Here we find Jacobi's investigations on

partial differential equations of the first order and their

application to the differential equations of dynamics.

An interesting chapter of the "Vorlesungen liber Dy-

namik" is the determination of the geodesies on an

ellipsoid; the problem leads to a relation between two

Abelian integrals.

11. Jacobi's lectures on dynamics lead us to another

mathematician whose name is often linked with that of

Jacobi, William Rowan Hamilton (not to be confused

with his contemporary, William Hamilton, the Edin-

burgh philosopher). He lived his whole life in Dublin,

where he was born of Irish parents. He entered Trinity

College, became in 1827 at the age of twenty-one Royal

Astronomer of Ireland and held this position until his

death in 1865. As a boy he learned continental mathe-

•Y. Mikami, On the Japanese Theory of Determinants, Isis 2

(1914) pp. 9-36.
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maties—still a novelty in the United Kingdom—by
studying Clairaut and Laplace and showed his mastery

of the novel methods in his extremely original work on

optics and dynamics. His theory of optical rays (1824)

was more than merely a differential geometry of lino

congruences; it was also a theory of optical instruments

and allowed Hamilton to predict the conical refractions

in biaxial crystals. In this paper appeared his "charac-

teristic function," which became the guiding idea of the

"General Method in Dynamics," published in 1834-35.

Hamilton's idea was to derive both optics and dy-

namics from one general principle. Euler, in his defense

of Maupertuis, had already shown how the stationary

value of the action integral could serve this purpose.

Hamilton, in accordance with this suggestion, made
optics and dynamics two aspects of the calculus of

variations. He asked for the stationary value of a certain

integral and considered it as a function of its limits.

This- was the "characteristic" or "principal" function,

which satisfied two partial differential equations. One
of these partial differential equations, which is usually

written

IS
dt \dq"(If. ) - •

was specially selected by Jacobi for his lectures on
dynamics and is now known as the Hamilton-Jacobi

equation. This has obscured the importance of Hamil-
ton's characteristic function, which had the central

place in his theory as a means of unifying mechanics
and mathematical physics. It was rediscovered by Bruns
in ' S95 in the case of geometrical optics and as "eikonal"
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has shown its use in the theory of optical instruments.

The part of Hamilton's work on dynamics which has

passed into the general body of mathematics is, in the

first place, the "canonical" form, q = dll/dp, p =

— dIJ/dq, in which he wrote the equations of dynamics.

Canonical form and Hamilton-Jacobi differential equa-

tion have enabled Lie to establish the relation between

dynamics and contact transformations. Another since

equally accepted idea of Hamilton was the derivation

of the laws of physics and mechanics from the variation

of an integral. Modern relativity, as well as quantum

mechanics, has based itself on"Hamiltonian" functions

as its underlying principle.

The year 1843 was a turning point in Hamilton's

life. In that year he found the quaternions, to the study

of which he devoted the later part of his life. We shall

discuss this discovery later.

12. Peter Lejeune Dirichlet was closely associated

with Gauss and Jacobi, as well as with the French math-

ematicians. He lived from 1822-27 as a private tutor and

met Fourier, whose book he studied; he also became

familiar with Gauss' " Disquisitiones arithmeticae." He

later taught at the University of Breslau and in 1855

succeeded Gauss at Gottingen. His personal acquaint-

ance with French as well as German mathematics and

mathematicians made him the appropriate man to serve

as the interpreter of Gauss and to subject Fourier series

to a penetrating analysis. Dirichlct's beautiful " Vor-

lesungen iiber Zahlentheorie" (publ. 18(53) still form

one of the best introductions into Gauss' investigations

in number theory. They also contain many new results.
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In a paper of 1840 Dirichlet showed how to apply the

full power of the theory of analytical functions to prob-

lems in number theory; it was in these investigations

that he introduced the "Dirichlet" series. He also ex-

tended the notion of quadratic irrationalities to that of

general algebraic domains of rationality.

Dirichlet first gave a rigorous convergence proof of

Fourier series, and in this way contributed to a correct

understanding of the nature of a function. He also intro-

duced into the calculus of variations the so-called

Dirichlet principle, which postulated the existence of a

function v which minimizes the integral f[i>l 4- v\ +
v]]dr under given boundary conditions. It was a modi-
fication of a principle which Gauss had introduced in

his potential theory of 1839-40, and it later served Rie-

mann as a powerful tool in solving problems in potential

theory. We have already mentioned that Hilbert even-

tually established rigorously the validity of this prin-

ciple <p. 208).

13.With Bernhard Riemann, Dirichlet's successor at

Gottingen, we reach the man who more than any other

has influenced the course of modern mathematics.

Riemann was the son of a country minister and studied

at the University of Gottingen, where in 1851 he ob-

tained the doctor's degree. In 1854 he became Privat-

dozent, in 1859 a professor at the same university. He
was sickly, like Abel, and spent his last days in Italy,

where he died in 1866 at forty years of age. In his short

life he published only a relatively small number of

papers but each of them was—and is—important, and
several have opened entirely new and productive fields.

UKOlHi I HIKD1IK II HKIt.VHARD RIEMANN (1826-18C0)
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In 1851 appeared Riemann's doctoral thesis on the

theory of complex functions u + iv = f(x + iy). Like
D'Alembert and Cauchy, Riemann was influenced by
hydrodynamical considerations. He mapped the (xy)-

plane conformally on the (uu)-plane and established the

existence of a function capable of transforming any
simply connected region in one plane into any simply

connected region in the other plane. This led to the

conception of the Riemann surface, which introduced

topological considerations into analysis. At that time
topology was still an almost untouched subject on which
J. B. Listing had published a paper in the "Gottingen
Studien" of 1847. Riemann showed its central import-

ance for the theory of complex functions. This thesis

also clarified Riemann's definition of a complex func-

tion: its real and imaginary part have to satisfy the
" Cauchy-Riemann" equations, u, = v, , u, = — vx , in

a given region, and furthermore have to satisfy certain

conditions as to boundary and singularities.

Riemann applied his ideas to hypergeometric and
Abelian functions (1857), using freely Dirichlet's prin-

ciple (as he called it). Among his results is the discovery

of the genus of a Riemann surface as a topological in-

variant and as a means of classifying Abelian functions.

A posthumously published paper applies his ideas to

minimal surfaces (1867). To this branch of Riemann's
activity also belong his investigations on elliptical

modular-functions and 6-series in p independent vari-

ables, as well as those on linear differential equations
with algebraic coefficients.

Riemann became a Privatdozent in 1850 by submit-
ting no less than two fundamental papers, one on trigo-
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nomctric series and the foundations of analysis, the

other one on the foundations of geometry. The first of

these papers analyzed Dirichlet's conditions for the

expansion of a function in a Fourier series. One of these

conditions was that the function be "integrable." But

what does this mean? Cauchy and Dirichlet had already

given certain answers; Riemann replaced them by his

own, more comprehensive one. He gave that definition

which we now know as the "Riemann integral," and

which was replaced only in the Twentieth Century by

the Lebesgue integral. Riemann showed how functions,

defined by Fourier series, may show such properties as

the possession of an infinite number of maxima or

minima, which older mathematicians would not have

accepted in their definition of a function. The concept

of a function began seriously to emancipate from the

"curva quaecunquc libcro manus ductu descripta'" of

Euler. In his lectures Riemann gave an example of a

continuous function without derivatives; an example

of such a function which Weierstrass had given was

published in 1875. Mathematicians refused to take such

functions very seriously and called them "pathological"

functions; modern analysis has shown how natural such

functions arc and how Riemann here again had pene-

trated into a fundamental field of mathematics.

The other paper of 1854 deals with the hypotheses on

which geometry is based. Space was introduced as a

topological manifold of an arbitrary number of dim-

ensions; a metric was defined in such a manifold by

means of a quadratic differential form. Where Riemann,

'"Some curve described by freely leading the hand" (Inst.

Calc. integr. Ill §301).
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in his analysis, had defined a complex function by its

local behavior, in this paper he defined the character

of space in the same way. Riemann's unifying principle

not only enabled him to classify all existing forms of

geometry, including the still very obscure non-euclidean

geometry, but also allowed the creation of any number
of new types of space, many of which have since found

a useful place in geometry and mathematical physics.

Riemann published this paper without any analytical

technique, which made his ideas difficult to follow. Later

some of the formulas appeared in a prize essay on the

distribution of heat on a solid, which Riemann sub-

mitted to the Paris Academy (1861). Here we find a

sketch of the transformation theory of quadratic forms.

The last paper of Riemann which must be mentioned

is his discussion of the number F(x) of primes less than

a given number x (1859). It was an application of com-

plex number theory to the distribution of primes and

analyzed Gauss' suggestion that F(x) approximates the

logarithmic integral /J (log !)"' dl. This paper is cele-

brated because it contains the so-called Riemann hy-

pothesis that Euler's Zeta-function f(s)—the notation

is Riemann's—if considered for complex s = x + iy, has

all non-real zeros on the line x = J. This hypothesis

has never been proved, nor has it been disproved.'

14. Riemann's concept of the function of a com-

plex variable has often been compared to that of

Weierstrass. Karl Weierstrass was for many years a
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'R. Courant, Bcrnhard Riemann urul die. Mnlhcmalik der lelzlen

hundert Jahre, Naturwissch. 14 (1926) pp. 813-818.

teacher at Prussian Gymnasia (Latin high schools) and

in 1856 became professor of mathematics at the Uni-

versity of Berlin, where he taught for thirty years.

His lectures, always meticulously prepared, enjoyed in-

creasing fame; it is mainly through these lectures that

Weierstrass' ideas have become the common property

of mathematicians.

In his Gymnasial period Weierstrass wrote several

papers on hyperelliptic integrals, Abelian functions, and

algebraic differential equations. His best known contri-

bution is his foundation of the theory of complex

functions on the power series. This was in a certain

sense a return to Lagrange, with the difference that

Weierstrass worked in the complex plane and with

perfect rigor. The values of the power scries inside its

circle of convergence represent the "function element,"

which is then extended, if possible, by so-called analytic

continuation. Weierstrass especially studied entire func-

tions and functions defined by infinite products. His

elliptic function p (u) has become as established as the

older sn u, en u, dn u of Jacobi.

Weierstrass' fame has been based on his extremely

careful reasoning, on "Weierstrassian rigor," which is

not only apparent in his function theory but also in

his calculus of variations. He clarified the notions of

minimum, of function, and of derivative, and with this

eliminated the remaining vagueness of expression in

the fundamental concepts of the calculus. He was

the mathematical conscience par excellence, methodo-

logical and logical. Another example of his meticulous

reasoning is his discovery of uniform convergence. With

Weierstrass began that reduction of the principles of

17
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KARL WEEBRSTRASS (1815-1897)

analysis to the simplest arithmetical concepts which

we call the arithmetization of mathematics.

"It is essentially a merit of the scientific activity of Wcieratrass

that there exists at present in analysis full agreement and cer-

tainty concerning the course of such types of reasoning which are

based on the concept of irrational number and of limit in

general. We owe it to him that there is unanimity on all results

in the most complicated questions concerning the theory of

differential and integral equations, despite the most daring and

diversified combinations with application of super-, juxta-, and

transposition of limits."1

15. This arithmetization was typical of the so-called

School of Berlin and especially of Leopold Kronecker.

To this school belonged such eminent mathematicians,

proficient in algebra and the theory of algebraic num-

bers, as Kronecker, Kummer, and Frobenius. With these

men we may associate Dedekind and Cantor. Ernst

Kummer was called to Berlin in 1855 as successor to

Dirichlet; he taught there until 1883, when he volun-

tarily stopped doing mathematical work because he

felt a coming decline in productivity. Kummer further

developed the differential geometry of congruences

which Hamilton had outlined and in the course of his

study discovered the quartic surface with sixteen nodal

points, which is called after him. His reputation is

primarily based on his introduction of the "ideal"

numbers in the theory of algebraic domains of ration-

ality (1846). This theory was inspired partly by Kum-

raer's attempts to prove Fermat's great theorem and

•D. Hilbert, Ueber das Unendliche, Mathematische Annalen 95

(1926) pp. 161-190; French translation, Acta Mathematica 48

(1926) pp. 91-122.
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partly by Gauss' theory of biquadratic residues in which

the conception of prime factors had been introduced

within the domain of complex numbers. Rummer's
"ideal" factors allowed unique decomposition of num-
l>ers into prime factors in a general domain of ration-

ality. This discovery made possible great advances in

the arithmetic of algebraic numbers, which were later

masterfully summarized in the report of David Hilbert

written for the German mathematical society in 1897.

The theory of Dedekind and Weber, which established

a relation between the theory of algebraic functions and
the theory of algebraic numbers in a certain domain of

rationality (1882), was an example of the influence of

Rummer's theory on the process of arithmetisation of

mathematics.

Leopold Rronecker, a man of private means, settled

in Berlin in 1855 where he taught for many years at the

university without a formal professional chair, only

accepting one after Rummer's retirement in 1883.

Rronecker's main contributions were in elliptic func-

tions, in ideal theory, and in the arithmetic of quadratic
forms; his published lectures on the theory of numbers
are careful expositions of his own and of previous

discoveries, and also show clearly his belief in the
necessity of the arithmetisation of mathematics. This
belief was based on his search for rigor; mathematics,
he thought, should be based on number,and all number
on the natural number. The number t, for instance,

rather than be derived in the usual geometrical way,

should be based on the series I — s + i — =+••• and
6 5 7

thus on a combination of integer numh rs; certain con-
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tinued fractions for r might also serve the same purpose.

Rronecker's endeavor to force everything mathematical

into the pattern of number theory is illustrated by his

well-known statement at a meeting in Berlin in 1886:

"Die ganzen Zahlen hat der Hebe Gott gemacht, alles

andere ist Menschenwerk.'" He accepted a definition

of a mathematical entity only in the case that it can

be verified in a finite number of steps. Thus he coped

with the difficulty of the actually infinite by refusing

to accept it. Plato's slogan that God always "geom-

etrizes" was replaced, in Rronecker's school, by the

slogan that God always "arithmetizes."

Rronecker's teaching on the actually infinite was in

flagrant contrast to the theories of Dedekind and espe-

cially of Cantor. Richard Dedekind, for thirty-one years

professor at the Technische Hochschule in Brunswick,

constructed a rigorous theory of the irrational. In two

small books, "Stetigkeit und Irrationalzahlen" (1872)

and "Was sind und was sollen die Zahlen" (1882) ,
he

accomplished for modern mathematics what Eudoxos

had done for Greek mathematics. There is a great

similarity between the "Dedekind cut" with which

modern mathematics (except the Rronecker school)

defines irrational numbers and the ancient Eudoxos

theory as presented in the fifth book of Euclid's ele-

ments. Cantor and Wcierstrass gave arithmetical defini-

tions of the irrational numbers differing somewhat from

•"The integer numbers have been made by God, everything

else is the work of man."

Translated as "Continuity and Irrational Numbers ,
lne

Nature and the Meaning of Numbers" by A. Beman (Chicago,

1901).
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the Dedekind theory but based on similar considera-

tions.

The greatest heretic in Kronecker's eye, however, was

Georg Cantor. Cantor, who taught at Halle from 1869

until 1905, is known not only because of his theory of

the irrational number, but also because of his theory of

aggregates ("Mengenlehre"). With this theory Cantor

created an entirely new field of mathematical research,

which was able to satisfy the most subtle demands of

rigor once its premises were accepted. Cantor's publica-

tions began in 1870 and continued for many years; in

1883 he published his "Grundlagen einer allgemeinen

Mannigfaltigkeitslehre." In these papers Cantor de-

veloped a theory of transfinite cardinal numbers based

on a systematical mathematical treatment of the actu-

ally infinite. He assigned the lowest transfinite cardinal

number K to a denumerable set, giving the continuum

a higher transfinite number, and it thus became pos-

sible to create an arithmetic of transfinite numbers

analogous to ordinary arithmetic. Cantor also defined

transfinite ordinal numbers, expressing the way in

which infinite sets are ordered.

These discoveries of Cantor were a continuation of the

ancient scholastic speculations on the nature of the

infinite, and Cantor was well aware of it. He defended

St. Augustine's full acceptance of the actually infinite,

but had to defend himself against the opposition of

many mathematicians who refused to accept the infinite

except as a process expressed by ~ .
Cantor's leading

opponent was Kronecker, who represented a totally

opposite tendency in the same process of arithmetiza-

tion of mathematics. Cantor finally won full acceptance
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when the enormous importance of his theory for the
foundation of real function theory and of topology be-
came more and more obvious—this especially after

Lebeegue in 1901 had enriched the theory of aggregates
with his theory of measure. There remained logical
difficulties in (he theory of transfinite numbers and
paradoxes appeared, such as those of Burali Forti and
Russell. This again led to different schools of thought
on the foundation of mathematics. The Twentieth Cen-
tury controversy between the formalists and the in-

tuitinists was a continuation on a novel level of the
controversy between Cantor and Kronecker.

16. Contemporaneous with this remarkable develop-
ment of algebra and analysis was the equally remarkable
flowering of geometry. It can be traced back to Monge's
instruction, in which we find the roots of both the
"synthetic" and the "algebraic" method in geometry.
In the work of Monge's pupils both methods became
separated, the " synthetic" method developed into pro-
jective geometry, the "algebraic" method into our
modern analytical and algebraic geometry. Projective
geometry as a separate science began with Poncelet's
book of 1822. There were priority difficulties, as so
often in cases concerning a fundamental discovery, since
Poncelet had to face the rivalry of Joseph Gergonne,
professor at Montpelier. Gergonne published several im-
portant papers on projective geometry in which he
grasped the meaning of duality in geometry simultane-
ously with Poncelet. These papers appeared in the
"Annales de mathematiques," the first purely mathe-
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matical periodical. Gergonne was its editor; it appeared

from 1810 to 1832.

Typical of Poncelet's mode of thinking was another

principle, that of continuity, which enabled him to

derive the properties of one figure from those of another.

He expressed the principle as follows:

If the figure results from another by a continuous change, and

is as general as the first, then a property proved on the first figure

can be transferred to the other without further consideration.

This was a principle which had to be handled with

great care, since the formulation was far from precise.

Only modern algebra has been able to define its domain

more accurately. In the hands of Poncelet and his

school it led to interesting, new, and accurate results,

especially when it was applied to changes from the real

to the imaginary. It thus enabled Poncelet to state that

all circles in the plane had "ideally two imaginary

points at infinity in common," which also brought in

the so-called "line at infinity" of the plane. G. H. Hardy

has remarked that this means that projective geometry

accepted the actually infinite without any scruples.'

The analysts were to remain divided on this subject.

Poncelet's ideas were further developed by German

geometers. In 1826 appeared the first of Steiner's publi-

cations, in 1827 Mobius' " Baryccntrischer Calcul," in

1828 the first volume of Plucker's " Analytisch-geome-

trische Entwicklungen." In 1831 appeared the second

>G. H. Hardy, A Course of Pure Mathematics (Cambridge.

1933, 6th ed.) Appendix IV.
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volume, followed in 1832 by Steiner's "Systematische

Entwicklung." The last of the great German pioneer

works in this type of geometry appeared in 1847 with

the publication of Von Staudt's axiomatic "Geometrie

der Lage."

Both the synthetic and the algebraic approach to

geometry were represented among these German geom-

eters. The typical representative of the synthetic (or

"pure") school was Jacob Steiner, a self-made Swiss

farmer's son, a "Hirtenknabe", who became enamored of

geometry by making the acquaintance of Pestalozzi's

ideas. He decided to study at Heidelberg and later

taught at Berlin, where from 1834 until his death in 1863

he held a chair at the university. Steiner was thoroughly

a geometer; he hated the use of algebra and analysis

to such an extent that he even disliked figures. Geom-

etry in his opinion could best be learned by concentrated

thought. Calculating, he said, replaces, while geometry

stimulates, thinking. This was certainly true for Steiner

himself, whose methods have enriched geometry with a

large number of beautiful and often intricate theorems.

We owe him the discovery of the Steiner surface with a

double infinity of conies on it (also called the Roman
surface). He often omitted the proof of his theorems,

which has made Steiner's collected works a treasure

trove for geometers in search of problems to solve.

Steiner constructed his projective geometry in a

strictly systematic way, passing from perspectivity to

projectivity and from there to the conic sections. He
also solved a number of isoperimetrical problems in his

own typical geometrical way. His proof (1836) that the

circle is the figure of largest area for all closed curves
JAKOB STEINER (1796-1863)
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of given perimeter made use of a procedure by which

every figure of given perimeter which is not a circle

could be changed into another one of the same perimeter

and of larger area. Steiner's conclusion that the circle

therefore represented the maximum suffered from one

omission: he did not prove the actual existence of a

maximum. Dirichlet tried to point it out to Steiner; a

rigorous proof was later given by Weierstrass.
1

Steiner still needed a metric to define the cross ratio

of four points or lines. This defect in the theory was re-

moved by Christian Von Staudt, for many years a

professor at the University of Erlangen. Von Staudt, in

his "Geometrie der Lage," defined the "Wurf" of four

points on a straight line in a purely projective way, and

then showed its identity with the cross ratio. He used

for this purpose the so-called Moebius net construction,

which leads to axiomatic considerations closely related

to Dedekind's work when irrational values of projective

coordinates are introduced. In 1857 Von Staudt showed

how imaginary elements can be rigorously introduced

into geometry as double elements of elliptic involutions.

During the next decades synthetic geometry grew

greatly in content on the foundations laid by Poncelet,

Steiner, and Von Staudt. It was eventually made the

subject of a number of standard textbooks, of which

Reye's "Geometrie der Lage" (1868, 3rd ed. 1886-1892)
2

is one of the best known examples.

17. Representatives of algebraic geometry were

W. Blaschke, Kreis und Kugd (Leipzig, 1916) pp. 1-42.

'Translated as "Lectures on the geometry of position" (New
York, 1898).
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Moebius and Plucker in Germany, Chaslns in France,

and Cayley in England. August Ferdinand Moebius,

more than fifty years observer, later director of the

Leipzig astronomical observatory, was a scientist of

many parts. In his book "Der barycentrische Calciil"

he was the first to introduce homogeneous coordinates.

When the masses m, , m» , m 3 are placed at the vertices

of a fixed triangle, Moebius gave to the center of

gravity (barycentrum) of these masses the coordi-

nates m, : m3 : m* , and showed how these coordinates

are well fitted to describe the projective and affine

properties of the plane. Homogeneous coordinates, from

now on, became the accepted tool for the algebraic

treatment of projective geometry. Working in quiet

isolation not unlike his contemporary Von Staudt,

Moebius made many other interesting discoveries. An

example is the null system in the theory of line con-

gruences, which he introduced in his textbook on statics

(1837). The "Moebius strip," a first example of a non-

orientable surface, is a reminder of the fact that

Moebius is also one of the founders of our modern

science of topology.

Julius Plucker, who taught for many years at Bonn,

was an experimental physicist as well as a geometer. He

made a series of discoveries in crystal magnetism,

electrical conduction in gases, and spectroscopy. In a

series of papers and books, especially in his "Neue

Geometrie des Raumes" (1868-69) he reconstructed

analytical geometry by the application of a wealth of

new ideas. Plucker showed the power of the abbreviated

notation, in which for instance C\ + \C3 = represents

a pencil of conies. In this book he introduced homoge-
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neous coordinates, now as "projective" coordinates

based on a fundamental tetrahedron, and also the

fundamental principle that geometry needs not solely

be based on points as basic element. Lines, planes,

circles, spheres can all be used as the elements ("Raum-
eleraente") on which a geometry can be based. This

fertile conception threw new light on both synthetic

and algebraic geometry, and created new forms of

duality. The number of dimensions of a particular form

of geometry could now be any positive integer number,

depending on the number of parameters necessary to

define the "element." Plucker also published a general

theory of algebraic curves in the plane, in which he

derived the "Plucker relations" between the number
of singularities (1834, 1839).

Michel Chasles, for many years the leading repre-

sentative of geometry in France, was a pupil of the

Ecole Polytechnique in the later days of Monge and

in 1841 became professor at this institute. In 1846 he

accepted the chair of higher geometry at the Sorbonne,

especially established for him, where he taught for many
years. Chasles' work had much in common with that of

Plucker, notably in his ability to obtain the maximum
of geometrical information from his equations. It led

him to adroit operation with isotropic lines and circular

points at infinity. Chasles followed Poncelet in the use

of "enumcrative" methods, which in his hands de-

veloped into a new branch of geometry, the so-called

"cnumerative geometry." This field was later fully ex-

plored by Hermann Schubert in his " Kalkiil der abzahl-

enden Geometrie" (1879) and by H. G. Zeuthen in his

"Abzahlende Methoden" (1914). Both books reveal the
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strength as well as the weakness of this type of algebra

in geometrical language. Its initial success provoked

a reaction led by E. Study, who stressed that " precision

in geometricis may not perpetually be treated as inci-

dental."'

Chasles had a fine appreciation for the history of

mathematics, especially of geometry. His well-known

" Apercu historique sur l'origine et le deVeloppement des

mSthodes en geom6trie" (1837) stands at the beginning

of modern history of mathematics. It is a very readable

text on Greek and modern geometry, and is a good

example of a history of mathematics written by a pro-

ductive scientist.

18. During these years of almost feverish produc-

tivity in the new projective and algebraic geometries

another novel and even more revolutionary type of

geometry lay hidden in a few obscure publications dis-

carded by most leading mathematicians. The question

whether Euclid's parallel postulate is an independent

axiom or can be derived from other axioms had puzzled

mathematicians for two thousand years. Ptolemy had

tried to find an answer in Antiquity, Naslr al-dln in the

Middle Ages, Lambert and Legendre in the Eighteenth

Century. All these men had tried to prove the axiom

and had failed; even if they reached some very interest-

ing results in the course of their investigation. Gauss was

the first man who believed in the independent nature of

the parallel postulate, which implied that other geom-

etries, based on another choice of axiom, were logically

«See E. Study, Verhandlungen Third Intern. Congress Heidel-

berg 1905, pp. 388-395, B. L. Van der Waerden, Diss. Leiden 1926.
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Courtesy of Seripta Malhtmatiea

NICOLAI IVANOVITCH LOBACHEVSKY (1793-1856)

possible. Gauss never published bis thoughts on this

subject. The first to challenge openly the authority of

two millennia and to construct a non-euclidean geom-

etry were a Russian, Nikolai Ivanovitch Lobachevsky,

and a Hungarian, Janos Bolyai. The first in time to

publish his idea was Lobachevsky, who was a professor

in Kazan and lectured on the subject of Euclid's parallel

axiom in 1826. His first book appeared in 1829-30 and

was written in Russian. Few people took notice of it.

Even a later German edition with the title "Geome-

trische Untersuchungen zur Theorie der ParalleUinien"

received little attention, even though Gauss showed

interest. By that time Bolyai had already published his

ideas on the subject.

Janos (Johann) Bolyai was the son of a mathematics

teacher in a provincial town of Hungary. This teacher,

Farkas (Wolfgang) Bolyai, had studied at Gottingen

when Gauss was also a student there. Both men kept

up an occasional correspondence. Farkas spent much

time in trying to prove Euclid's fifth postulate (p. 60),

but could not come to a definite conclusion. His son in-

herited his passion and also began to work on a proof

despite his father's plea to do something else:

"You should detest it just as much as lewd intercourse, it can

deprive you of all your leisure, your health, your rest, and the

whole happiness of your life. This abysmal darkness might per-

haps devour a thousand towering Newtons, it will never be light

on earth " (Letter of 1820).

Janos Bolyai entered the army and built up a reputa-

tion as a dashing officer. He began to accept Euclid's

postulate as an independent axiom and discovered that

18
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it was possible to construct a geometry, based on

another axiom, in which through one point in a plane

an infinity of lines can be laid which do not intersect

a line in the plane. This was the same idea which had

already occurred to Gauss and Lobachevsky. Bolyai

wrote down his reflections, which were published in

1832 as an appendix to a book of his father and which

had the title "Appendix scientiam spatii absolute veram
exhibens." The worrying father wrote to Gauss for

advice on the unorthodox views of his son. When the

answer from Gottingen came, it contained enthusiastic

approval of the younger Bolyai's work. Added to this

was Gauss' remark that he could not praise Bolyai, since

this would mean self-praise, the ideas of the" Appendix"

having been his own for many years.

Young Janos was deeply disappointed by this letter

of approval which elevated him to the rank of a great

scientist but robbed him of his priority. His disappoint-

ment increased when he met with little further recogni-

tion. He became even more upset when Lobachevsky's

book was published in German (1840); he never pub-

lished any more mathematics.

Bolyai's and Lobachevsky's theories were similar in

principle, though their papers were very different. It is

remarkable how the new ideas sprang up independently

in Gottingen, Budapest, and Kazan, and in the same
period after an incubation period of two thousand years.

It is also remarkable how they matured partly outside

the geographical periphery of the world of mathematical

research. Sometimes great new ideas are born outside,

not inside, the schools.

Non-euclidean geometry (the name is due to Gauss)
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remained for several decades an obscure field of science.

Most mathematicians ignored it, the prevailing Kantian

philosophy refused to take it seriously. The first lead-

ing scientist to understand its full importance was

Riemann, whose general theory of manifolds (1854)

made full allowance not only for the existing types

of non-euclidean geometry, but also for many other,

so-called Ricmannian, geometries. However, full accept-

ance of these theories came only when the generation

after Riemann began to understand the meaning of his

theories (1870 and later).

Still another generalization of classical geometry

originated in the years before Riemann and did not find

full appreciation until after his death. This was the

geometry of more than three dimensions. It came fully

developed into the world in Grassmann's "Ausdeh-

nungslehre'fTheory of Extension") of 1844. Hermann

Grassmann was a teacher at the Gymnasium in Stettin

and was a man of extraordinary versatility; he wrote

on such varied subjects as electric currents, colors and

acoustics, linguistics, botany, and folklore. His Sanskrit

dictionary on the Rigveda is still in use. The "Aus-

dehnungslehre," of which a revised and more readable

edition was published in 1861, was written in strictly

euclidean form. It built up a geometry in a space of n

dimensions, first in affine, then in metrical space. Grass-

mann used an invariant symbolism, in which we now

recognize a vector and tensor notation (his "gap"

products are tensors) but which made his work almost

inaccessible to his contemporaries. A later generation

took parts of Grassmann's structure to build up vector

analysis for affine and for metrical spaces.
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Although Cayley in 1843 introduced the same con-

ception of a space of n dimensions in a far less forbidding

form, geometry of more than three dimensions was
received with distrust and incredulity. Here again Rie-

mann's address of 1854 made full appreciation easier.

Added to Riemann's ideas were those of Pliicker, who
pointed out that space elements need not be points

(1865), so that the geometry of lines in three space

could be considered as a four-dimensional geometry, or,

as Klein has stressed, as the geometry of a four-dimen-

sional quadric in a five-dimensional space. Full accept-

ance of geometries of more than three dimensions

occurred only in the later part of the Nineteenth Cen-
tury, mainly because of their use in interpreting the

theory of algebraic and differential forms in more than

three variables.

19. The names of Hamilton and Cayley show that by
1840 English speaking mathematicians had at last be-

gun to catch up with their continental colleagues. Until

well into the Nineteenth Century the Cambridge and
Oxford dons regarded any attempt at improvement of

the theory of fluxions as impious revolt against the

sacred memory of Newton. The result was that the

Newtonian school of England and the Leibnizian school

of the continent drifted apart to such an extent that

Euler, in his integral calculus (1768), considered a
union of both methods of expressions as useless. The
dilemma was broken in 1812 by a group of young
mathematicians at Cambridge who, under the inspira-

tion of the older Robert Woodhouse, formed an "Ana-
lytical Society" to propagate the differential notation. ARTHUR CAYLEY (1821-1895)
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Leaders were George Peacock, Charles Babbage, and

John Herschel. They tried, in Babbage's words, to

advocate "the principles of pure d-ism as opposed to

the dot-age of the university." This movement met
initially with severe criticism, which was overcome by

such actions as the publication of an English translation

of Lacroix' "Elementary Treatise on the Differential

and Integral Calculus" (1816). The new generation in

England now began to participate in modern mathe-

matics.

The first important contribution came not from the

Cambridge group, however, but from some mathe-

maticians who had taken up continental mathematics

independently. The most important of these mathema-
ticians were Hamilton and George Green. It is interest-

ing to notice that with both men, as well as with

Nathaniel Bowditch in New England, the inspiration

to study "pure d-ism" came from the study of Laplace's

"MScanique Celeste." Green, who was a self-taught

miller's aon of Nottingham, followed with great care

the new discoveries in electricity. There was, at that

time (c. 1825), almost no mathematical theory to ac-

count for the electrical phenomena; Poisson, in 1812,

had made no more than a beginning. Green read La-

place, and, in his own words

:

"Considering how desirable it was that a power of universal

agency, like electricity, should, as far as possible, be submitted

to calculation, and reflecting on the advantages that arise in the

solution of many difficult problems, from dispersing altogether

with a particular examination of each of the forces which actuate

the various bodies in any system, by confining the attention

solely on that peculiar function on whose differentials they all

depend, I was induced to try whether it would be possible to
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discover any general relations, existing between this function and

the quantities of electricity in the bodies producing it."

The result was Green's "Essay on the Application of

Mathematical Analysis to Theories of Electricity and

Magnetism" (1828), the first attempt at a mathematical

theory of electro-magnetism. It was the beginning of

modern mathematical physics in England and, with

Gauss' paper of 1839, established the theory of potential

as an independent branch of mathematics. Gauss did

not know Green's paper, which only became wider

known when William Thompson (the later Lord Kel-

vin), had it reprinted in Crelle's Journal of 1846. Yet

the kinship of Gauss and Green was so close that where

Green selected the term "potential function", Gauss

selected almost the same term, "potential," for the

solution of Laplace's equation. Two closely related

identities, connecting line and surface integrals, are

called the formula of Green and the formula of Gauss.

The term "Green's function" in the solution of partial

differential equations also honors the miller's son who

studied Laplace in his spare time.

We have no room for a sketch of the further develop-

ment of mathematical physics in England, or, for that

matter, in Germany. With this development the names

of Stokes, Rayleigh, Kelvin, and Maxwell, of Kirchhoff

and Helmholtz, of Gibbs and of many others are con-

nected. These men contributed to the solution of partial

differential equations to such an extent that mathe-

matical physics and the theory of linear partial differ-

ential equations of the second order sometimes seemed

to become identified. Mathematical physics, however,
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brought fertile ideas to other fields of mathematics, to

probability and complex function theory, as well as to

geometry. Of particular importance was James Clerk

Maxwell's "Treatise on Electricity and Magnetism"
(1873, 2 vols.), which gave a systematic mathematical

exposition of the theory of electromagnetism based on
Faraday's experiments. This theory of Maxwell event-

ually dominated mathematical electricity, and later

inspired the theories of Lorentz on the electron and
Einstein on relativity.

20. Nineteenth Century pure mathematics in Eng-
land was primarily algebra, with applications primarily

to geometry and with three men, Cayley, Sylvester, and
Salmon, leading in this field. Arthur Cayley devoted his

early years to the study and practice of law, but in 1863

he accepted the new Sadlerian professorship of mathe-
matics at Cambridge where he taught for thirty years.

In the forties, while Cayley practiced law in London, he
met Sylvester, at that time an actuary; and from
those years dates Cayley's and Sylvester's common
interest in the algebra of forms—or quantics, as Cayley
called them. Their collaboration meant the beginning

of the theory of algebraic invariants.

This theory had been "in the air" for many years,

especially after determinants began to be a subject of

study. The early work of Cayley and Sylvester went
beyond mere determinants, it was a conscious attempt
to give a systematic theory of invariants of algebraic

forms, complete with its own symbolism and rules of

composition. This was the theory which was later im-
proved by Aronhold and Clebsch in Germany and

JAMES JOSEPH SYLVESTER (1814-1897)

From an old photograph
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formed the algebraic counterpart of Poncclet's projec-

tive geometry. Cayley's voluminous work covered a
large variety of topics in the fields of finite groups,
algebraic curves, determinants, and invariants of alge-

braic forms. To his best known works belong his nine

"Memoirs on Quantics" (1854-1878). The sixth paper
of this series (1859) contained the projective definition

of a metric with respect to a conic section. This dis-

covery led Cayley to the projective definition of the
euclidean metric and in this way enabled him to assign

to metrical geometry its position inside the framework
of projective geometry. The relation of this projective

metric to non-euclidean geometry escaped the eye of

Cayley; it was later discovered by Felix Klein.

James Joseph Sylvester was not only a mathemati-
cian but also a poet, a wit, and with Leibniz the greatest

creator of new terms in the whole history of mathe-
matics. From 1855 to 1869 he taught at Woolwich
Military Academy. He was twice in America, the first

time as a professor at the University of Virginia (1841-

42), the second time as a professor at Johns Hopkins
University in Baltimore (1877-1883). During this second
period he was one of the first to establish graduate work
in mathematics at American universities; with the
teaching of Sylvester the flourishing of mathematics
began in the United States.

Two of Sylvester's many contributions to algebra
have become classics: his theory of elementary divisors

(1851, rediscovered by Weieratrass in 1868) and his

law of inertia of quadratic forms (1852, already known
to Jacobi and Riemann, but not published). We also

owe to Sylvester many terms now generally accepted,
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such as invariant, covariant, contravariant, cogredient

and syzygy. Many anecdotes have been attributed to

him—several of the absent-minded-professor variety.

The third English algebrist-geometer was George

Salmon, who during his long life was connected with

Trinity College, Dublin, Hamilton's alma mater, where

he instructed in both mathematics and divinity. His

main merit lies in his well-known textbooks which excel

in clarity and charm. These books opened the road to

analytical geometry and invariant theory to several

generations of students in many countries and even now

have hardly been surpassed. They are the "Conic

Sections" (1848), "Higher Plane Curves" (1852),

"Modern Higher Algebra" (1859), and the "Analytic

Geometry of Three Dimensions" (1862). The study of

these books can stiU be highly recommended to all

students of geometry.

21. Two products of the algebra of the United King-

dom deserve our special attention :
Hamilton's quatern-

ions and Clifford's biquaternions. Hamilton, the Royal

Astronomer of Ireland, having completed his work on

mechanics and optics, turned in 1835 to algebra. His

"Theory of Algebraic Couples" (1835) defined algebra

as the science of pure time and constructed a rigorous

algebra of complex numbers on the conception of a

complex number as a number pair. This was probably

independent of Gauss, who in his theory of biquadratic

residues (1831) had also constructed a rigorous algebra

of complex numbers, but based on the geometry of the

complex plane. Both conceptions are now equally

accepted. Hamilton subsequently tried to penetrate
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W. R. Hamilton

(1805-1865)

I

into the algebra of number triples, number quadruples,

etc. The light dawned upon him—as his admirers like

to tell—on a certain October day of 1843, when walking

under a Dublin bridge he discovered the quaternion.

His investigations on quaternions were published in

two big books, the "Lectures on Quaternions" (1853)

and the posthumous "Elements of Quaternions" (1866).

The best known part of this quaternion calculus was

the theory of vectors (the name is due to Hamilton),

which was also part of Grassmann's theory of extension.

It is mainly because of this fact that the algebraic works

of Hamilton and Grassmann are now frequently quoted.

In Hamilton's days, however, and long afterwards, the

quaternions themselves were the subject of an exag-

gerated admiration. Some British mathematicians saw

in the calculus of quaternions a kind of Leibnizian

"arithmetica universalis," which of course aroused a

reaction (Heaviside versus Tait) in which quaternions

lost much of their glory. The theory of hypercomplex

numbers, elaborated by Peirce, Study, Frobenius, and

Cartan, has eventually placed quaternions in their

legitimate place as the simplest associative number

system of more than two units. The cult of the quatern-

ion in its heyday even led to an " International Associa-

tion for Promoting the Study of Quaternions and

Allied Systems of Mathematics," which disappeared as

a victim of the World War I. Another aspect of the

quaternion controversy was the fight between partisans

of Hamilton and Grassmann, when, through the efforts

of Gibbs in America and Heaviside in England, vector

analysis had emerged as an independent brand of

mathematics. This controversy raged between 1890
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and the first world war and was finally solved by the

application of the theory of groups, which established

the merits of each method in its own field of operation.
1

William Kingdon Clifford, who died in 1879 at the

age of thirty-three, taught at Trinity College, Cam-
bridge and at University College, London. He was one

of the first Englishmen who understood Riemann, and

with him shared a deep interest in the origin of our

space conceptions. Clifford developed a geometry of

motion for the study of which he generalized Hamilton's

quaternions into the so-called biquaternions (1873-

1876). These were quaternions with coefficients taken

from a system of complex numbers o + be, where t
1 may

be 4- 1 ,
— 1 or 0, and which could also be used for the

study of motion in non-euclidean spaces. Clifford's

"Common Sense in the Exact Sciences" is still good

reading; it brings out the kinship in thinking between

him and Felix Klein. This kinship is also revealed in

the term "spaces of Clifford-Klein" for certain closed

euclidean manifolds in non-euclidean geometry. If Clif-

ford had lived, Riemann's ideas might have influenced

British mathematicians a generation earlier than they

actually did.

For many decades pure mathematics in the English

speaking countries maintained its strong emphasis on
formal algebra. It influenced the work of Benjamin
Peirce of Harvard University, a pupil of Nathaniel

Bowditch, who did distinguished work in celestial

mechanics and in 1872 published his "Linear Associa-

F. Klein, Vorlesungen liber die Enluncklung der Mathematik
in 19. Jahrhundert (Berlin, 1927) II, pp. 27-52; J. A. Schouten,

Grundlagen der Veklor-und Affinoranalysis (Leipzig, 1914).

tive Algebras." one of the first systematic studies of

hypercomplcx numbers. The formalist trend in English

mathematics may also account for the appearance of

an investigation of "The Laws of Thought" (1854) by

George Boole of Queen's College, Dublin. Here it was

shown how the laws of formal logic, which had been

codified by Aristotle and taught for centuries in the

universities, could themselves be made the subject of a

calculus. It established principles in harmony with

Leibniz' idea of a "characteristica generalis." This

"algebra of logic" opened a school of thought which

endeavored to establish a unification of logic and

mathematics. It received its impetus from Gottlob

Frege's book "Die Grundlagen der Arithmetik" (1884),

which offered a derivation of arithmetical concepts

from logic. These investigations reached a climax in

the Twentieth Century with the "Principia Mathe-

matica" of Bertrand Russell and Alfred N. Whitehead

(1910-1913); they also influenced the later work of

Hilbert on the foundations of arithmetic and the elimi-

nation of the paradoxes of the infinite.

22. The papers on the theory of invariants by Cayley

and Sylvester received the greatest attention in Ger-

many, where several mathematicians developed the

theory into a science based on a complete algorithm . The

main figures were Hesse, Aronhold, Clebsch, and

Gordan. Hesse, who was a professor at Konigsberg and

later at Heidelberg and Munich, showed, like Plucker,

lD. Hilbert-W. Ackermann, Orundzuge der theorelitchen Logik

(Berlin, 1928). M Black, The Nature of Mathematics (New York,

London, 1933).
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the power of abbreviated methods in analytical geom-

etry. He liked to reason with the aid of homogeneous

coordinates and of determinants. Aronhold, who taught

at the Technische Hochschule in Berlin, wrote a paper

in 1858 in which he developed a consistent symbolism

in invariant theory with the aid of so-called "ideal"

factors (which bear no relation to those of Kummer);

this symbolism was further developed by Clebsch in

1861, under whose hands the " Clebsch-Aronhold" sym-

bolism became the almost universally accepted method

for the systematic investigation of algebraic invariants.

We now recognize in this symbolism as well as in

Hamilton's vectors, Grassman's gap products, and

Gibbs' dyadics, special aspects of tensor algebra. This

theory of invariants was later enriched by Paul Gordan

of the University of Erlangen, who proved (1868-69)

that to every binary form belongs a finite system of

rational invariants and covariants in which all other

rational invariants and covariants can be expressed in

rational form. This theorem of Gordan (the "Endlich-

keitssatz") was extended by Hilbert in 1890 to algebraic

forms in n variables.

Alfred Clebsch was professor at Karlsruhe, Giessen,

and Gottingen and died at thirty-nine years of age.

His life was a condensation of remarkable achievements.

He published a book on elasticity (1862), following the

leadership of Lam6 and De Saint Venant in France ; he

applied his theory of invariants to projective geometry.

He was one of the first men who understood Riemann

and was a founder of that branch of algebraic geometry

in which Riemann's theory of functions and of multiply

connected surfaces was applied to real algebraic curves.
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Clebsch-GordanVTheorie der Abelschen Funktionen"

(1866) gave a broad outline of these ideas. Clebsch also

founded the "Mathematische Annalen," for more than

sixty years the leading mathematical journal. His lec-

tures on geometry, published by F. Lindemann, remain

a standard text on projective geometry.

23. By 1870 mathematics had grown into an enor-

mous and unwieldy structure, divided into a large num-

ber of fields in which only specialists knew the way.

Even great mathematicians—Hermite, Weierstrass,

Cayley, Beltrami—at most could be proficient in only

a few of these many fields. This specialization has con-

stantly grown until at present it has reached alarming

proportions. Reaction against it has never stopped, and

some of the most important achievements of the last

hundred years have been the result of a synthesis of

different domains of mathematics.

Such a synthesis had been realized in the Eighteenth

Century by the works of Lagrange and Laplace on

mechanics. They remained a basis for very powerful

work of varied character. The Nineteenth Century

added to this new unifying principles, notably the

theory of groups and Riemann's conception of function

and of space. Their meaning can best be understood in

the work of Klein, Lie, and Poincarl.

Felix Klein was Pliicker's assistant in Bonn during

the late sixties; it was here that he learned geometry.

He visited Paris in 1870 when he was twenty-two years

of age. Here he met Sophus Lie, a Norwegian six years

his senior, who had become interested in mathematics

only a short time before. The young men met the French

19



FELIX KLEIN (1849-1925)

From a photograph taken during his vigorous middle years
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mathematicians, among them Camilie Jordan of the

Ecole Polytechnique and studied their work. Jordan,

in 1870, had just written the "Trait6 des substitutions,"

his book on substitution groups and Galois' theory of

equations. Klein and Lie began to understand the

central importance of group theory and subsequently

divided the field of mathematics more or less into two

parts. Klein, as a rule, concentrated on discontinuous,

Lie on continuous groups.

In 1872 Klein became professor at Erlangen. In his

inaugural address he explained the importance of the

group conception for the classification of the different

fields of mathematics. The address, which became known

as the "Erlangen program," declared every geometry,

to be the theory of invariants of a particular trans-

formation group. By extending or narrowing the group

we can pass from one type of geometry to another.

Euclidean geometry is the study of the invariants of

the metrical group, projective geometry of those of the

projective group. Classification of groups of transfor-

mation gives us a classification of geometry; the theory

of algebraic and differential invariants of each group

gives us the analytical structure of a geometry. Cay-

ley's projective definition of a metric allows us to con-

sider metrical geometry in the frame of projective

geometry. "Adjunction" of an invariant conic to a

projective geometry in the plane gives us the non-eu-

clidean geometries. Even relatively unknown topology

received its proper place as the theory of invariants of

continuous point transformations.

In the previous year Klein had given an important

example of his mode of thinking when he showed how
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non-euclidean geometries can be conceived as pro-

jective geometries with a Cayley metric. This brought

full recognition at last to the neglected theories of

Bolyai and Lobachevsky. Their logical consistency was
now established. If there were logical mistakes in non-

euclidean geometry, then they could be detected in

projective geometry, although few mathematicians were

willing to admit such a heresy. Later this idea of an
"image" of one field of mathematics on another field

was often used and played an important factor in

Hilbert's axiomatics of geometry.

The theory of groups made possible a synthesis of the

geometrical and algebraic work of Monge, Poncelet,

Gauss, Cayley, Clcbsch, Grassmann, and Riemann.
Riemann's theory of space, which had offered so many
suggestions of the Erlangen program, inspired not only

Klein but also Helmholtz and Lie. Helmholtz in 1868

and 1884 studied Riemann's conception of space, partly

by looking for a geometrical image of his theory of

colors, partly by inquiring into the origin of our ocular

measure. This led him to investigate the nature of geo-

metrical axioms and especially Riemann's quadratic

measurement. Lie improved on Helmholtz' specula-

tions concerning the nature of Riemann's measurement
by analyzing the nature of the underlying groups of

transformations (1890). This "Lie-Hehnholtz" space

problem has been of importance not only to relativity

and group theory, but also to physiology.

Klein gave an exposition of Riemann's conception of

complex functions in his booklet "Ueber Riemann's
Theorie der algebraischen Funktionen" (1882), in which
he stressed how physical considerations can influence

MARIUS sophus lie (1842-1899)
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even the subtlest type of mathematics. In the "Vor-
lesungen ueber das Ikosaeder" (1884) he showed that

modern algebra could teach many new and surprising

things about the ancient Platonic bodies. This work was
a study of rotation groups of the regular bodies and their

role as Galois groups of algebraic equations. In extensive

studies by himself and by scores of pupils Klein applied

the group conception to linear differential equations,

to elliptic modular functions, to Abelian and to the

new "automorphic" functions, the last in an interesting

and friendly competition with Poincare\ Under Klein's

inspiring leadership Gottingen, with its traditions of

Gauss, Dirichlet, and Riemann, became a world center

of mathematical research where young men and women
of many nations gathered to study their special sub-
jects as an integral part of the whole of mathematics.
Klein gave inspiring lectures, the notes of which cir-

culated in mimeographed form and provided whole
generations of mathematicians with specialized infor-

mation and—above all—with an understanding of the
unity of their science. After Klein's death in 1925 several

of these lecture nptes were published in book form.
While in Paris Sophus Lie had discovered the contact

transformation, and with this the key to the whole of

Hamiltonian dynamics as a part of group theory. After
his return to Norway he became a professor in Christi-

ania, later, from 1886 to 1898, he taught at Leipzig.

He devoted his whole life to the systematic study of

continuous transformation groups and their invariants,

demonstrating their central importance as a classifying

principle in geometry, mechanics, ordinary and partial
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differential equations. The result of this work was codi-

fied in a number of standard tomes, edited with the aid

of Lie's pupils Scheffers and Engel ("Transformations-

gruppen," 1888-1893; "Differentialgleichungen," 1891;

"Kontinuierliche Gruppen," 1893; " Beruhrungstrans-

formation," 1896). Lie's work has since been con-

siderably enriched by the French mathematician.Elie

Cartan.

24. France, faced with the enormous growth of math-

ematics in Germany, continued to produce excellent

mathematicians in all fields. It is interesting to compare

German and French mathematicians; Hermite with

Weicretrass, Darboux with Klein, Hadamard with Hil-

bert, Paul Tannery with Moritz Cantor. From the

forties to the sixties the leading mathematician was

Joseph Liouville, professor at the College de France in

Paris, a good teacher and organizer and editor for many

years of the "Journal de mathematiques pures et appli-

quees." He investigated in a systematic way the arith-

metic theory of quadratic forms of two and more

variables, but "Liouville's theorem" in statistical me-
'

chanics shows him as a productive worker in an entirely

different field. He established the existence of trans-

cendental numbers and in 1844 proved that neither e

nor e* can be a root of a quadratic equation with rational

coefficients. This was a step in the chain of arguments

which led from Lambert's proof in 1761 that r is irra-

tional to Hermite's proof that e is transcendental (1873)

and the final proof by F. Lindemann (a Weierstrass

pupil) that t is transcendental (1882) .. Liouville and
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several of his associates developed the differential geom-
etry of curves and surfaces; the formulas of Frenet-
Serret (1847) came out of Liouville's circle.

Charles Hermite, a professor at the Sorbonne and at
the Ecole Polytechniquc, became the leading representa-
tive of analysis in France after Cauchy's death in 1857.
Hermite's work, as well as that of Liouville, was in the
tradition of Gauss and Jacobi; it also showed kinship
with that of Riemann and Weierstrass. Elliptic func-
tions, modular functions, theta-functions, number and
invariant theory all received his attention, as the names
"Hermitian numbers", "Hermitian forms" testify. His
friendship with the Dutch mathematician Stieltjes, who
through Hermite's intervention obtained a chair at
Toulouse, was a great encouragement to the discoverer
of the Stieltjes integral and the application of continued
fractions to the theory of moments. The appreciation
was mutual :

" Vous avez toujours raison et j'ai toujours
tort,"

1

Hermite once wrote to his friend. The four vol-

ume "Correspondance" (1905) between Hermite and
Stieltjes contains a wealth of material, mainly on func-
tions of a complex variable.

The French geometrical tradition was gloriously con-
tinued in the books and papers of Gaston Darboux.
Darboux was a geometer in the sense of Monge, ap-
proaching geometrical problems with full mastery of
groups and differential equations, and working on
problems of mechanics with a lively space intuition.

Darboux was professor at the College de France and
for half a century active in teaching. His most influential

work was his standard "Lecons sur la theorie g6ne>ale

•"You are always right and I am always wrong."

T. i. stieltjes (1856-1894)
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des surfaces" (4 vols., 1887-1896), which presented the
results of a century of research in the differential geom-
etry of curves and surfaces. In Darboux' hands this

differential geometry became connected in the most
varied ways with ordinary and partial differential equa-
tions as well as with mechanics. Darboux, with his

administrative and pedagogical skill, his fine geometrical
intuition, his mastery of analytical technique, and his

understanding of Riemann, occupied a position in

France somewhat analogous to that of Klein in Ger-
many.

This second part of the Nineteenth Century was the
period of the great French comprehensive textbooks
on analysis and its applications, which often appeared
under the name of "Cours d'analyse" and were written
by leading mathematicians. The most famous are the
"Cours d'analyse" of Camille Jordan (3 vols., 1882-87)
and the "Traite" d'analyse" of Emile Picard (3 vols.,

1891-96), to which was added the "Cours d'analyse
mathematique" by Edouard Goursat (2 vols., 1902-05).

25. The greatestFrench mathematician of the second
half of the Nineteenth Century was Henri Poincarg,
from 1881 until his death professor at the Sorbonne in

Paris. No mathematician of his period commanded such
a wide range of subjects and was able to enrich them all.

Each year he lectured on a different subject; these
lectures were edited by students and cover an enormous
field: potential theory, light, electricity, conduction of
heat, capillarity, electromagnetics, hydrodynamics, ce-
lestial mechanics, thermodynamics, probability. Every
one of these lectures was brilliant in its own way;

HENRI POINCARE (1854-1912)
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together they present ideas which have borne fruit in

the works of others while many still await further

elaboration. Poincarg, moreover, wrote a number of

popular and semi-popular works which helped to give
a general understanding of the problems of modern
mathematics. Among them are" La valeur de la science"

(1905) and "La science et l'hypothese" (1906). Apart
from these lectures Poincare' published a large number
of papers on the so-called automorphic and fuchsian
functions, on differential equations, on topology, and
on the foundations of mathematics, treating with great
mastery of technique and full understanding all

pertinent fields of pure and applied mathematics. No
mathematician of the Nineteenth Century, with the
possible exception of Riemann, has so much to say
to the present generation.

The key to the understanding of Poincare's work may
lie in his meditations on celestial mechanics, and in

particular on the three-body problem ("Les m&hodes
nouvelles de m^canique celeste", 3 vols., 1893). Here
he showed direct kinship with Laplace and demon-
strated that even at the end of the Nineteenth Century
the ancient mechanical problems concerning the uni-
verse had lost nothing of their pertinence to the pro-
ductive mathematician. It was in connection with these
problems that Poincare' studied divergent series and
developed his theory of asymptotic expansions, that he
worked on integral invariants, the stability of orbits,

and the shape of celestial bodies. His fundamental dis-

coveries on the behavior of the integral curves of differ-

ential equations near singularities, as well as in the large,

are related to his work on celestial mechanics. This is

also true of his investigations on the nature of proba-

bility, another field in which he shared Laplace's in-

terest. Poincare' was like Euler and Gauss, wherever

we approach him we discover the stimulation of origi-

nality. Our modern theories concerning relativity, cos-

mogony, probability, and topology are all vitally in-

fluenced by Poincare's work.

26. The Risorgimento, the national rebirth of Italy,

also meant the rebirth of Italian mathematics. Several

of the founders of modern mathematics in Italy par-

ticipated in the struggles which liberated their country

from Austria and unified it ; later they combined polit-

ical positions with their professional chairs. The in-

fluence of Riemann was strong, and through Klein,

Clebsch, and Ceyley the Italian mathematicians ob-

tained their knowledge of geometry and the theory

of invariants. They also became interested in the theory

of elasticity with its strong geometrical appeal.

Among the founders of the new Italian school of

mathematicians were Brioschi, Cremona, and Betti. In

1852 Francesco Brioschi became professor in Pavia,

and in 1862 organized the technical institute at Milan

where he taught until his death in 1897. He was a

founder of the "Annali di matematica pura et appli-

cata" (1858)—which indicated in the title its desire to

emulate Crelle's and Liouville's journals. In 1858 in

company with Betti and Casorati he visited the leading

mathematicians of France and Germany. Volterra later

claimed that "the scientific existence of Italy as a
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nation" dated from this journey.
1

Brioschi was the

Italian representative of the Cayley-Clebsch type of

research in algebraic invariants. Luigi Cremona, after

1873 director of the engineering school in Rome, has

given his name to the birational transformation of plane

and space, the "Cremona" transformations (1863-65).

He was also one of the originators of graphical statics.

Eugenio Beltrami was a pupil of Brioschi and occu-

pied chairs in Bologna, Pisa, Pavia, and Rome. His

main work in geometry was done between 1860 and
1870 when his differential parameters introduced a cal-

culus of differential invariants into surface theory.

Another contribution of that period was his study of

so-called pseudospherical surfaces, which are surfaces

of which the Gaussian curvature is negative constant.

On such a pseudosphere we can realize a two-dimen-

sional non-euclidean geometry of Bolyai. This was, with

Klein's projective interpretation, a method to show
that there were no internal contradictions in non-
euclidean geometry, since such contradictions would
also appear in ordinary surface theory.

By 1870 Riemann's ideas became more and more the

common good of the younger generation of mathema-
ticians. His theory of quadratic differential forms was
made the subject of two papers by the German mathe-
maticians E. B. Christoffel and R. Lipschitz (1870).

The first paper introduced the "Christoffel" symbols.

These investigations, combined with Beltrami's theory

of differential parameters, brought Gregorio Ricci-Cur-

bastro in Padua to his so-called absolute differential

»V. Volterra, Bull. Am. Math. Soc. 7 (1900) p. 60-«2.
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calculus (1884). This was a new invariant symbolism

originally constructed to deal with the transformation

theory of partial differential equations, but it provided

at the same time a symbolism fitted for the transfor-

mation theory of quadratic differential forms.

In the hands of Ricci and of some of his pupils,

notably of Tullio Levi-Civita, the absolute differential

calculus developed into what we now call the theory of

tensors. Tensors were able to provide a unification of

many invariant symbolisms, and also showed their

power in dealing with general theorems in elasticity,

hydrodynamics, and relativity. The name tensor has

its origin in elasticity (W. Voigt, 1900).

The most brilliant representative of differential geom-

etry in Italy was Luigi Bianchi. His "Lezioni di geo-

metria differenziale" (2nd ed., 3 vols., 1902-1909) ranks

with Darboux' "Theorie generate des surfaces" as a

classical exposition of Nineteenth Century differential

geometry.

27. David Hilbert, professor at Gottingen, presented

to the International Congress of Mathematicians in

Paris in 1900 a series of twenty-three research projects.

At that time Hilbert had already received recognition

for his work on algebraic forms and had prepared his

now famous book on the foundations of geometry

("Grundlagen der Geometrie," 1900). In this book he

gave an analysis of the axioms on which euclidean

geometry is based and explained how modern axiomatic

research has been able to improve on the achievements

of the Greeks.
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In this address of 1900 Hilbert tried to grasp the

trend of mathematical research of the past decades and
to sketch the outline of future productive work.

1 A
summary of his projects will give us a better under-

standing of the meaning of Nineteenth Century math-
ematics.

First of all Hilbert proposed the arithmetical formu-

lation of the concept of continuum as it was presented

in the works of Cauchy, Bolzano, and Cantor. Is there

a cardinal number between that of a denumerable set

and that of a continuum? and can the continuum be

considered as a well ordered assemblage? Moreover,
what can be said about the compatibility of the arith-

metical axioms?

The next projects dealt with the foundations of

geometry, with Lie's concept of a continuous group of

transformations—is differentiability necessary?—and
with the mathematical treatment of the axioms of

physics.

Some special problems followed, first in arithmetic

and in algebra. The irrationality or transcendence of

certain numbers was still unknown (e.g. a? for an
algebraic a, and irrational /3). Equally unknown was
the proof of Riemann's hypothesis concerning the roots

of the Zeta-function, as well as the formulation of the

most general law of reciprocity in number theory.

Another project in this field was the proof of the finite-

ness of certain complete systems of functions suggested

by the theory of invariants.
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'Translation in Bulletin Am. Math. Soc. (2), 8 (1901-02) pp.
437-479.

The fifteenth question demanded a rigorous formu-

lation of Schubert's enumerative calculus, the sixteenth

a study of the topology of algebraic curves and surfaces.

Another problem concerned the division of space by

congruent polyhedra.

The remaining projects dealt with differential equa-

tions and the calculus of variations. Are the solutions

of regular problems in the calculus of variations always

analytic? Has every regular variational problem under

given boundary conditions a solution? How about the

uniformization of analytic relations by means of auto-

morphic functions? Hilbert ended his enumeration with

an appeal for the further development of the calculus of

variations.
1

Hilbert's program demonstrated the vitality of math-

ematics at the end of the Nineteenth Century and

contrasts sharply with the pessimistic outlook existing

toward the end of the Eighteenth Century. At present

some of Hilbert's problems have been solved; others

still await their final solution. The development of

mathematics in the years after 1900 has not disap-

pointed the expectations raised at the close of the

Nineteenth Century. Even Hilbert's genius, however,

could not foresee some of the striking developments

which actually have taken place and are taking place

to-day. Twentieth Century mathematics has followed

its own novel path to glory.

A discussion of the problems outlined by Hilbert after thirty

years in L. Bieberbach, Uber den Einfluss von IHlberls Pariser

Vortrag vher "Mathematische Probleme" auf die EnlwicMung der

Mathematik in den letzten dreissig Jahren, Naturwisaenschaften

18 (1936) pp. 1101-1111.

20
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