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Introduction

Ph}?slcs as a general discipline has no limits, from the very huge (galaxy-

wide) to the very small (atoms and smaller), This hoak is about the very
small side of things — that's the specialty of quantum physics, When vou gugn-
tize something, vou can't go any smialler; you're dealing with discrete units,

Classical physics is terrific at explaining things like heating cups of collee or
accelerating down ramps or cars colliding, as well as a million other things,
but it has problems when things get very small. Quantum phyvsics usually
deals with the micro world, such as what happens when you look at individual
electrons zipping arcund, For example, electrons can exhibit both particle and
wave-like properties, much to the consternation of experimenters — and it
took quantum phvsics to figure out the full picture,

Chuantum physics also introduced the uncertainty principle, which savs yvou
can't know a particle’s exact position and momentum at the same time. And
the tield explains the way that the energy levels of the electrons bound in
atoms work, Figuring out those ideas all took quantum physics, as physicists
probed ever deeper for a way to model reality. Those topics are all eoming
up in this book.

About This Book

Because uncertainty and probability are so important in quantum physics,
you can't fully appreciate the subject without getting into calealus. This book
presents the need-to-know concepts, but yvou don't see much in the way of
thought sxperiments that deal with cats or parallel universes, [ focus on the
math and how it describes the quantum world.

I've taught physics to many thousands of students at the university level,
and from thar experience, | know most of them share one commaon trait:
Confusion as to what they did fo deserve such forfure.

Chaantum Phyvsics For Dwmmies largely maps to a college course, but this book
is different from standard texts. Instead of writing it from the physicist's or
professor's point of view, I've tried Lo write it from the reader's point of view,
In other words, 've designed this book to be crammed full of the good stull —
and only the good stull. Mot only that, but vou can discover wayvs of looking at
things that professors and teachers use to make figuring out problems simple.



Ouantum Physics For Dummies

Although I encourage yvou to read this book from start to finish, you can alzo
leaf through this ook as vou like, reading the topics that vou find interest-
ing, Like other For Dummies beoks, this one lets yvou skip around as vou like
as much as possible, You don't have to read the chapters in order if vou
don’t want to, This iz your ook, and quantum physics ks your ovster,

Conventions Used in This Book

Some books have a dozen dizzving conventions that you need to know belore
vou can even start, Mot this one, Here's all yvou need to know:

P 1 put new terms in italics, like #fiis, the first fime they're discussed;
I follpw them with a definition.

= Vectnrs — those items that have hoth a magnitude and a direction —
are Fiven in bold, like this: B,

# Welb addresses appear in monofont.,

Foolish Assumptions

| don't assume that yvou have any knowledee of quantum physics when yon
start to read this book, Howewver, | do make the following assumptions;

= You're taking a college course in quantum physics, or you're interested

in how math describes motion and energy on the atemic and subatomic
scale.

= You have some math prowess. In particolar, you know same calculus,
You don't need to be a math pro, but vou should know how to perform

integration and deal with differential equations, Ideally, vou also have
some experience with Hilhert space.

= You have some physics hackground as well, You've had a year’s worth

of college-level physics (or understand all that's in Physics For Dummies)
hefore you tackle this one,

How This Book Is Organized

Cuantum physics — the study of very small objects — ks actually a very hig
tapic. To handle it, quantom physicists break the world down into different
parts. Here are the various parts that are coming up in this book,



Introduction

Part I: Small World, Huh? Essential
Ouantum Physics

Part | is where you start your guantum phoysics joumey, and vou det a doodd
overview of the bopic here, | survey gquantum phesics and tell vou what it's
good for and what kinds of problems it can solve. ¥Yow also get a good foun-
dation in the math that vou need for the rest of the book, such as state vec-
tors and quankum matrix manipulations. Knowing this stulf prepares you to
handle the other parts.

Part 1I: Bound and Undetermined:
Handling Particles in Bound States

Particles can be trapped inside potentials; for instance, electrons can be
bound in an atom. Quantum physics excels at predicting the energy levels of
particles bound in various potentials, and that's what Part Il covers. You see
how Lo handle particles bound in square wells and in harmonic oscillators.

Part 111: Turﬂf::f to Angular
Momentum and Spin

Cwantum physics lets vou work with the micre world in terms of the angue-
lar momentum of particles, as well as the spin of electrons, Many famons
experiments — such as the Stern-Gerlach experiment, in which beams of par-
ticles split in magnetic lields — are understandable enly in terms of guaniom
physics, and vou 2et all the details here.

Part IU: Multiple Dimensions: Going 30
with Quantum Physics

In the first three parts, all the quantum physics problems are one-dimensional
to make life a little easier while you're understanding how to solve those
problems. In Part IV, you branch out to working with three-dimensional prob-
lems in both rectangular and spherical coordinate systems, Takind things
[rom 1D to 30 gives vou a better picture of what happens in the real world.
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Part U: Group Dynamics: Introducing
Multiple Particles

In this part, you work with multiple-particle systems, such as atoms and
gases, You see how to handle many electrons in atoms, particles interacting
with other particles, and particles that scatter off other particles.

Dealing with multiple particles is all another step in modeling reality — after
all, svstems with only a single particle don’t take you very far in the real
world, which is bullt of mega, mega systems of particles. In Part V, you see
how quantum physics can handle the situathon,

Part VI: The Part of Tens

You see the Part of the Tens in all Far Owmmies books, This part is made
up of fast-paced lists of ten tems each. You get to see some of the ten best
online tutorials on quantum physics and a discussion of quantum physics’
ten greatest trinmphs.

Icons Used in This Book

o

You find a handful of icons in this book, and here's what they mean;

This icon flags particularly good advice, especially when you're solving
problems.

This icon marks something to remember, such as a law of physics or a particu-
Larly juicy equation.

This icon means that what follows is technical, insider stuff, You don't have to
read it if vou don’t want ta, but if vouwant to hecome a quantum phvsics pro
{and who doesn't?), take a look.

This icon helps you avoid mathematical or concepteal slip-ups,
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Wheve to Go from Here

All right, you're all set and ready to go. You can jump in anywhere you

likee. For instance, if yvou're sure electron spin is going o be a big topic of
conversation at a party this weekend, check out Chapter 6. And if vour
upcoming vacation to Geneva, Switzerland, includes a side trip o your new
favorkte particle accelerator — the Large Hadron Collider — vou can flip to
Chapter 12 and read up on scattering theory, But i vou want to get the full
story from the beginning, jump into Chapter 1 first — that’s where the action

starts,
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Part |

Small World, Huh?
Essential Quantum
Physics

T_hE ﬁth Wave By Rich Tennant

“It’s just like the reqular stew only it’s got
some bits of matter in it we can't identify.”




In this part . . .

This part is desidned to Jive vou an introduction to the
ways of quantum physics. Yoo see the issues that
gave rise bo quanbum physics and the kinds of solutions it
provides. | also introduce you to the kind of math that
quantum physics requires, including the notion of state
vectors,




Chapter 1

Discoveries and Essential
Quantum Physics

In This Chapter
Putting forth theories of quantization and discrele unils
Experimenting with waves acting as particles
Experimenting with particles acting as waves
Embracing uncertainty and probability

A coording to classical physics, particles are particles and waves are

waves, and never the twain shall mix. That s, particles have an energy
E and a momentum vector p, and that’s the end of it. And waves, such as light
waves, have an amplitede A and a wave vector & (where the magnitude of & =

ET"T. where L is the wavelength) that points in the direction the wave is tray-

cling. And that's the end of that, too, according to classical phosics.

But the reality is different — particles tburn out to exhibit wave-like proper-
ties, and waves exhibit particlelike properties as well, The Idea that waves
(like light) can act as particles (like electrons) and vice versa was the major
revelation that ushered in quantum physics as such an important part of the
waorld of physics, This chapter takes a look at the challenges facing classical
phyvsics around the turn of the 20th century — and how quantum physics
graduallv came to the rescue, Up to that point, the classical way of looking
at physies was thought to explain just aboot everything, But as those pesky
experimental physicists bave a way of doing, they came up with a bunch of
experiments that the theoretical physicists couldn't explain.

That made the theoretical physicists mad, and they 2ot on the job. The prob-
lem here was the microscopic world — the world that’s too tiny 1o see. On
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the larger scale, classical physics could still explain most of what was going
on — but when it came to effects that depended on the micro-world, classk
cal physics hegan to break down, Taking a look at how classical physics caol-
lapsed gives vou an infroduction to guantum physics that shows why people
needed it,

Being Discrete: The Trouble
with Black-Body Radiation

Che of the major ideas of guantum phyvsics is, well, guanlizalion — measuring
quantities in discrete, not continuous, units, The idea of quantized energies
arose with one of the earliest challenges to classical phyvsics; the problem of
black-body radlation,

When yvou heat an object, it bedgins to glow, Even hefore the dlow is visihle,
it's radiating in the infrared spectrum. The reason it glows is that as vou heat
it, the electrons on the surface of the material are agitated thermally, ansd
electrons being accelerabed and decelerated radiate light.

Phvsics in the late 19th and early 20th centuries was concerned with the
spectrum of light being emitted by black bodies. A black body is a piece of
material that radiates corresponding to its temperature — but it also absorbs
and reflects light from its surroundings. To make matters easier, phvsics pos-
tulated a hlack hody that reflected nothing and absorhed all the light falling
on it {hence the term back bodv, becavse the object would appear perfectly
black as it absorbed all light falling on it), When you heat a black body, it
wold radiate, emitting light.

Well, it was hard to come up with a physical black body — after all, what
material absorbs light 100 percent and doesn’t rellect anything? But the
phvsicists were clever abhout this, and they came up with the hollow cavity
vou see in Figure 1-1, with a hole in it

When you shine light on the hole, all that lght would go inside, where it
wirilg be reflected again and again — until it got absorbed (a negligible
amount of light would escape through the hale), And when you heated the
hollow cavity, the hole would begin to glow, 5o there vou have it — a pretty
good approximation of a black body,
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You can see the spectrum of & black body (and attempts to model that spec-
trum} in Figure 1-2, for two different temperatures, T, and T,. The prohlem
was that nobody was able to come up with a theoretical explanation for the
spectrum of lidht generated by the hlack body. Everything classical physics
could come up with went wrong.

Hola

Raleigh-Jaans Law

Enargy
Density

Fraquieney
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First attempt: Wien's Formula

The first one to try to explain the spectrum of a black body was Willhelm
Wien, in 1589, Using classical thermodynamics, he came up with this formula;

r.rIIu,T] = Apte ™!

where A and B are constants you determine from yvour physical setup, v is the
frevquency of the light, and T is the temperatare of the black body. (The spec-
trum is given by w[v, T], which is the energy density of the emitted light as a
function of frequency and temperature,)

This equation, Wien's formula, worked fine for high frequencies, as vou can
see in Figure 1-2; however, It failed for low frequencies,

Second attempt: Raleigh-Jeans Law

Nextup in the attempt to explain the black-hody spectrum was the Raleigh-
Jeans Law, introduced around 1900, This laow predicted that the spectrum of
a black body was

r.rf:.l.'r] = F":—E‘:k'l'

where & is Boltmann's constant {approximately 1.3807 < 1005 LK. However,
the REaleigh-leans Law had the opposite problem of Wien's law: Although it
worked well at low frequencies (see Figure 1-23, it didn't mateh the higher-
frequency data at all = in fact, it diverged at higher frequencies. This was
called the wltramolel cafostrophe because the best predictions available
diverged at high frequencies (corresponding to ultraviolet light). Il was time
for quantum physics to take over,

An intuitive (quantum) leap:
Max Planck’s spectrum

The black-body problem was a tough one to solve, and with it came the lirst begin-
nings of quantum physics. Max Planck came up with a radical suggestion —
what if the amount of energy that a light wave can exchange with matter
wasn't continuous, as postulated by classical phvsics, bul discrefe®n other
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words, Planck postulated that the energy of the light emitted from the walls
of the black-body cavity came only in integer multiples like this, where & is a
universal constant:

E = vy, where n=10,1,2, ...

With this theory, crazy as it sounded in the early 1900s, Planck converted the
continuous integrals used by Raleigh-Jeans to discrete sums over an infinite
number of terms. Making that simple change gave Flanck the following egua-
tion for the spectrum of Black-hody radiation;

,!,.:UIT]JIL;&I’L

o [T l

This equation got it right — it exactly describes the hlack-hody apectrum,
both at low and high (and medium, for that matter) frequencies.

This idea was quite new, What Planck was saying was that the energy of

the radiating oscillators in the black body couldn't take on just any hevel of
energy, as classical phyvsics allows: it could take on only specific, guaniized
energies. In fact, Planck hvpothesized that that was true for any oscillator —
that its energy was an integral mualtiple of .

And g0 Planck’s equation came to be known as Planck’s guanfizalion rile, and
i became Planck's constant ki = 6,626 = 107" Joule-seconds. Saving that the
energy of all oscillators was quantized was the hirth of quantum physics.

Une has to wonder how Planck came up with his theory, because it's not
an obvious hvpothesis, Oscillators can oscillate only at discrete energies?
Where did that come from? [n any case, the revolution was on — and there
Was o sLopping it

The First Pieces: Seeing Light
as Particles

Light as particles? Isn’t light made up of waves? Light, it turns out, exhibits
properties of both waves and particles. This section shows you some of the
cvidenoe,
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Solving the photoelectric effect

The photoelectric effect was one of many experimental results that made up
a crisis for classical physics around the turn of the 20th century. It was also

one of Einstein’s first successes, and it provides proof of the quantization of
light. Here's what happened.

When you shine light onto metal, as Figure 1-3 shows, vou get emitted
clectrons. The electrons absork the light vou shine, and if they et enough
energy, they're able to break free of the metal's surface. According to ¢las-
sical physics, light is just a wave, and it can exchange any amount of energy
with the metal. When vou beam light on a plece of metal, the electrons in the
metal should absorb the light and slowly get up enough energy to be emit-
ted from the metal, The Idea was that if vou were to shine more light cnto
the metal, the electrons should he emitted with a higher kinetlc energy, And
very weak light shouldn't be able to emit electrons at all, except in a matter
of hours,

But that's not what happened — electrons were emitted as soon as someone
shone light on the metal. In fact, no matter how weak the intensity of the
incident Llight (and researchers tried experiments with such weak light that it
should have taken howrs bo get any electrons emitted), electrons were emit-
ted. Immediately.

Light
Elactrons

Figure 1-3:
The photo-
electric
affect.

Experiments with the photoelectric effect showed that the kinetic energy, K, of
the emitted electrons depended only on the frequency — not the intensity —
of the incident light, as you can see in Figure 1-4.
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In Figure 1-1, v, is called the fheeshold freqoeacy, and i§vou shine light with a fre-
guency below this threshold on the metal, no electrons are emitted, The emitted
electrons come from the pool of free electrons in the metal (all metaks have a pool
of Tree electrons), and vou need to supply these electrons with an energy equiva-
lent to the metal’s work function, W, to emit the electron from the metal's surface,

The results were hard to explain classically, so enter Einstein, This was the
beginning of his heyday, around 1905, Encouraged by Planck’s success (see
the preceding section), Einstein postulated that not only were oscillators
guantized but so was licht — into discrete units called plotons. Light, he sug-
gested, acted like particles as well as waves.

Sovin this scheme, when light hits a metal surface, photons hit the free elec-
trons, and an electron completely absorbs each photon, When the energy,
fiu, of the photon is greater than the work function of the metal, the electron
is emitted. That is,

ho=W+K

where Wis the metal’s work function and K is the kinetic energy of the emit-
ted electron. Solving for K gives you the following:

K=hu=-W
You can also write this in terms of the threshold frequency this was;

Ko=f{u—u)
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Figure 1-5:
Light
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Figura 1-6:
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So apparently, lght isn't just a wave; vou can also view it as a particle, the
photon, In other words, light ks quantized,

That was also quite an unexpected plece of work by Einstein, although it was
based on the earlier work of Planck, Light guaatized? Light coming in discrete
enerdy packets? What next?

Scattering light off electrons:
The Compton effect

To aworld that still had trouble comprehending light as particles {see

the preceding section), Arthur Compton supplied the final blow with the
Compton effect, His experiment involved scattering photons off electrons, as
Figure 1-5 shows,

- '
L
Fhoton Elgctron at rest
A

Incident light comes in with a wavelength of & and hits the electron at rest,
After that happens, the light is scatterad, as vou see in Figure 1-,

Electron

il
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Classically, here’s what should've happened: The electron should™ve absorbed
the incident light, cscillated, and emitted it — with the same wavelepgth but
with an intensity depending on the intensity of the incident light, But that's
not what happened — in fact, the wavelength of the light s actually changed
b Ak, called the wavelength shiff. The scattered light has a wavelength of »

+ Al — in other words, its wavelength has increased, which means the light
has lost energy. And AL depends on the scattering angle, 8, not on the inten-
sity of the incident light.

Arthur Compton could explain the results of his experiment only by making
the assumption that he was actually dealing with two particles — a photon and
an electron. That is, he treated light as a discrete particle, not a wave, And he
made the assumption that the photon and the electron collided elastically —
that is, that both total energy and momentum were conserved,

Making the assumption that both the light and the electron were particles,
Compton then derived this formula for the wavelength shift (it's an easy cal-
culation if vou assume that the light is represented by a photon with energy
E = o and that its momentum is p = L)

. ]
Ad .E{]—EL‘GH)

where i is Planck's constant, m, is the mass of an electron, ¢ is the speed of
light, and & is the scattering angle of the light.

You also see this eguation in the equivalent form:
3 _ ;2 'ﬁ.-l_.-"}l
Ad=4xd sin L’E
where &, Is the Compton wavelength of an electron, & = §/m_ c. where
fo = hf2m And experiment confirms this relation — hoth equations,
Note that to derive the wavelength shift, Compton had to make the assump-

tion that here, light was acting as a particle, not as a wave, That is, the par-
ticle nature of light was the agpect of the light that was predominant,

Proof positron? Dirac and pair production

In 1928, the physicist Paul Dirac posited the existence of a positively charged
anti-electron, the posiron, He did this by taking the newly evolving field of
guantum physics o new territory by combining relativity with quantum
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mechanics to create relativistic guantum mechanics — and that was the
theory that predicted, through a plus/minus-sign interchange — the exis-
tence of the positron,

It was a bold prediction — an gnii-particle of the electron” But just four years
later, physicists actually saw the positron. Today's high-powered elementary
particle physics bas all kinds of synchrotrons and other particle accelerators
ta create all the elementary particles they need, but in the early 2th century,
this wasn't always so.

In those days, physicists relied on cosmic rays — those particles and high-
powered photons (called gamma rays) that strike the Earth (rom ouler space —
a5 thelr source of particles, They used clopdchambers, which were filled
with vapor from dry ice, 1o see the trails such particles left, They put their
chambers into magnetic fiefds to be able to measure the momentum of the
particles as they curved in those fields,

In 1932, a physicist noticed a surprising event, A pair of particles, oppositely
charged {which could be determined from the way they curved in the mag-
netic field) appeared from apparently nowhere, Mo particle trail led to the
crigin of the two particles that appeared. Thal was padepriddection — the con-
version of a high-powered photon into an electron and positron, which can
happen when the photon passes near a heavy atomic nuclews,

So experimentally, physicists had now seen a photon furning into a pair of
particles, Wow, As if evervone needed more evidence of the particle nature
of ligght, Later on, researchers also saw pair arnihilabion: the conversion of an
electron and positron into pure lighi,

Fair production and annihilation furned out to be governed by Einstein's
newly introduced theory ol relativity — in particular, his most famous for-
mula, E = me, which gives the pure energy equivalent of mass. At this point,
there was an abundance of evidence of the particle-like aspects of light.

A Dual Identity: Looking at
Particles as Waves

In 1523, the physicist Louis de Broglie sugdested that not only did waves
exhibit particle-like aspects but the reverse was also frue — all material par-
ticles should display wave-like properties.
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How does this work? For a photon, momentum p = /L = 4., where v is the
photon's frequency and X is its wavelength. And the wave vector, k, is coual
to & = p/h, where b = /28, De Broglie said that the same relation should hold
for all material particles. That is,

A=2

o
=&
. h

[ Broglie presented these apparently surprising suggestions in his Ph.D.
thesis, Researchers put these suggestions to the test by sending & heam
through a dual-slit apparatus to see whether the electron beam would act like
it was made up of particles or waves, In Figure 1-7, you can see the setup and
the results,
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In Figure 1-Ta, vou can see a beam of electrons passing through a single slit
and the resulting pattern on a screen. In Figure 1-Th, the electrons are pass-
ing through a second slit. Classically, vou'd expect the intensities of Figure

I-7a and 1-Th simply to add when both slits are open:

I=1 +1,
But that's not what happened. What actually appeared was an interference

pattern when both slits were open (Figure 1-Te), not just a sum of the twa
slits” electron intensities,
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The result was a validation of de Broglie's Invention of matter waves,
Experiment bore out the relation that & = */., and de Broglie was a success,

The idea of matter waves is a big part of what’s comlng up in the rest of the
hook, In particular, the existence of matter waves savs that vou add the
waves amplitude, y (£ and y,(r §), not thelr intensities, to sum them:

wir £} = (n 8} = yyln £)
You square the amplitude to get the inkensity, and the phase difference

between w,(r ) and y,(r. /) is what actually creates the interference pattem
that's ohserved.

Vou Can’t Know Everything (But You
Can Figure the Oddsj’

So particles apparently exhibit wave-like properties, and waves exhibit
particle-like properties. But if you have an electron, which is it — a wave or a
particle? The truth is that phyvsically, an electron is just an electron, and vou
can't actually say whether it's a wave or a particle. The act of measurermend is
what brings oul the wave or particle properties. You see more about this idea
throughout the ook,

Cuantum mechanics lives with an uncertain picture quite happily. That view

nffended many eminent physicists of the time — notably Albert Einstein, whio
said, famously, “God does not play dice.” [n this section, | discuss the idea of

uncertainty and how gquantum physicists work in probabilities instead,

The Heisenberg uncertainty principle

The fact that matter exhibits wave-like properties gives rise Lo mare trouble —
waves aren't lecalized in space. And knowing that inspired Werner Heisenberg,
in 1927, to come up with his celebrated uncertainty principle,

You can completely describe objects in classical physics by their momentum
and position, both of which yvou can meassure exactly, In other words, classi-
cal physics is completely deferminisiic,

Chi the atomic level, however, quantum physics paints a different picture.
Here, the Heisenberg uncerainty principle savs that there's an inherent uncer-
tainty in the relation between position and momentum. In the x direction, for
example, that leoks like this:
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Axap =0

where Ay is the measurement uncertainty in the particle’s x position, 6p, is
its measurement uncertainty in its momentum in the x direction and & = /27,

That is to say, the more accurately vou know the position of a particle, the
less aceurately vou know the momentum, and vice versa. This relation holds
for all three dimensions:

i
Avtp, =
az:-.p“-_*%

And the Helsenberg uncertainty principle is a direct consequence of the
wave-like nature of matter, because you can’t completely pin down a wave,

Quantum physics, unlike classical phvsics, is completely undeterministic,
Yo can never know the precise position and momentum of a particle at any
one time. You can give only probabilities for these linked

measurements.

Rolling the dice: Quantum physics
and probability

In quantum physics, the state of a particle is described by a wave function,
yilw, ). The wave function describes the de Broglie wave of a particle, giving
its amplitude as a function of position and time. [(See the earlier section *A
Drual ldentity: Looking at Particles as Waves” for more on de Broglie.)

Note that the wave function gives a particle's amplitude, not intensity; if you
want to find the intensity of the wave function, yvou have Lo square it [yl 137
The sefensidy of a wave is what's equal to the probability that the particle will
ke at that position at that time,

That's haw quantum physics converts issues of momentum and position into
probabilities: by using a wave function, whose square tells vou the probability
dengity that a particle will pocupy & particular position or have a particular
momentum, In other words, [wir, £31% v is the probability that the particle
will be found in the volume element &%, located at position » at time £
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Besides the position-space wave hunction ywir, £, there's also a momentum-
space version of the wave function: g, £

This book is largely a study of the wave function — the wave hunctions of free
particles, the wave functions of particles trapped inside potentials, of identi-
cal particles hitting each other, of particles in harmonic oscillation, of light
scattering from particles, and more, Using this kind of phyvsics, you can pre-
dict the behavior of all kinds of physical svstems,
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Entering the Matrix: Welcome
to State Vectors

In This Chapter
Creating state veclors
Lsing Lrirac notation for state vectors
Working with bras and kets
Understanding matrix mechanics
Getting to wave mechanics

0uantum phyvsics isn't just about playing around with your particle aceel-
wpe Cralor while trving not to destroy the universe, Sometimes, you get to
do things that are a little more mundane, like turm lights off and on, perform a
kit of calculus, or play with dice,

IT you're actually doing physics with those dice (beyond hurling them across
the room), the lab director won't even get mad at you, In quantum physics,
absolute measurements are replaced by prohabilities, so you may use dice to
calculate the probahilities that various numbers will ¢ome up. You can then
assemble those values into a vector (single-column matrix) in Hilbert space
[a type of infinitely dimensional vector space with some properties that are
especially valuable in quantum physics).

Thizs chapter introduces how vou deal with probabilities in quantum phys-
ics, starting by viewing the variows possible states a particle can occupy as
avector — a vector of probability states. From there, I help you familiarize
vourself with some mathematical notations common in quantum physics,
including bras, kets, matrices, and wave functions, Along the way, vou also
fet to work with some important operators,
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Creating Vour Own Vectors
in Hilbert Space

In quantum physics, probabilities take the place of absolute measurements.
Say vou've been experimenting with rolling a pair of dice and are trying to
ligure the relative probability that the dice will show various values. You
come up with a list indicating the relative probability of rolling a 2, 3, 4, and
so an, all the way up to 1

Sum of the Dice Relative Probabitity (Number of Ways
of Relling a Particular Total)
2 i
3 2
4 3
] 4
f 2
[ {F
8 F
9 4
i 3
11 2
12 |

In other words, vou're twice as likely to roll 3 3 than a 2, you're [our Hmes as
likelv to roll a 3 than a 2, and 20 on, You can assemble these relative prob-
abilities into a vector {If vou're thinking of a "vector” from physics, think in
terms of a column of the vector's components, not &5 magnitude and divection)
to keep track of them easily:
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Oheay, now you're getting closer to the way quantum physics works, You
have a vector of the probabilities that the dice will occupy various states,
However, quantum physics doesn’t deal directly with probabilities hut rather
with probability amplitides, which are the square roots of the probabilities.
T tined the actual probability that a particle will be inoa certain state, yon add
wave functions — which are going to be represented by these vectors — and
then square them (see Chapter 1 for info on why). 5o take the square root of
all these entries to get the probability amplitudes:
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That's better, but adding the squares of all these should add vp toa tokal
probability of 1; as it Is now, the sum of the squares of these numbers Is 36,
so0 divide each entry by 364, or &
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S50 now vou can get the probahility of rolling any combination from 2 to 12 by
reading down the vector — the probability of rolling a 2 is 'y, of rolling a 3 is

%m and &0 on.

Making Life Easier with Dirac Notation

When vou have a state vector that gives the probability amplitude that a pair
of dice will be in their various possible states, vou basically have a vector in
dice space — all the possible states that a pair of dice can take, which is an

I 1-dimensional space. (5ee the preceding section for more on state vectors.)
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But in most quantum phyvsics problems, the vectors can be infinltely large —for
example, a moving particle can be in an infinlte number of states, Handling
large arravs of states isn’t easy using vector notation, so instead of explicitly
writing out the whole vector each time, quantum physics usually uses the
notation developed by physicist Faul Dirac — the Disac or bra-ket nofation,

Abbreviating state vectors as kets

Dirac notation abbreviates the state vector as a kef, like this: Dy =, S50 in the
dice example, vou can write the state vector as a ket this way:

v
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S
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Here, the components of the state vector are represented by numbers in
11-dimensional dice space, More commonly, however, each compenent rep-
resents a function, something like this:

=

'|_.-". ]

6"

EI-I' _.l"fl VTl —an
/6
Lo s

3 [P, T
A6°

P [
L2
.-"f[l

'|___I.-"l o Tt
/6°

You can use hunctions as components of a state vector as long as they're
linearly independent functions (and so can be treated as independent axes
in Hilbert space), In general, a set of vectors §,, in Hilbert space is linearly
independent if the only solution to the fellowing equation is that all the coet-
licients a_= (-

E:r.r_ﬁ!l, =0

That s, as long as vou can't write any one vector as a linear combination of
the others, the vectors are linearly independent and so form a valid basis in
Hilbert space.
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Writing the Hermitian conjugate as a bra

For every ket, there's a corresponding bra, (The terms come from bra-kel, or
trcked, which should be clearer in the upcoming section titled "Grooving
with Crperators,™) A brg 15 the Hermitian conjugate of the corresponding ket.

Suppose vou start with this ket:

==
|/
.-"IE
iy
o
A6
:'-LI-?_."'.-I
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.-"fﬁ
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37
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.-"fﬁ

1./
AR

The " symbol means the complex conjugate. (A compler confugaie flips the
sign connecting the real and imaginary parts of a complex number.) 5o the
corresponding bra, which vou write as <y, equals |w="". The hra 5 this row
Vet

1/ R A V- SV L L
£

<= S8 T8 e TS S8 T8

2/ 3/ 2%/ s
Y8 T /8 5 /6

Mote that if any of the elements of the ket are complex numbers, you have to
take their complex conjugate when creating the associated bra. For instance,

if vour complex number in the ket is @ + B its complex conjugate in the bra is
& — b
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Multiplying bras and kets:
A probability of 1

Yom can take the pradoct of vour ket and bra, denoted as <y ly= like this;

e /6 6 S8 eS8 T8 6

2
3
2
1

This is just matrix moltiplication, and the resualt is the same as taking the sum
of the squares of the elements:

c:|||.-'||;f:==-|;+-E;+;:g-+—’1-+-57—-ﬁ7+-57+-'1_-+-H-+-2-+-1_-=1
d6 36 36 36 36 36 46 36 36 36 A6

Amnd that's the way it should be, because the total probahility should add up 1o
1. Therefore, in general, the product of the bra and ket equals 1
spw==1

If this relation holds, the ket D= is said to be normalized,

1/ 2'.-,.*“' HI;'; 2./ _:.'a,-"x ﬁ'l'*,rf 51 r 25 08 :fff z;f 'lf.-f A

/6

#

6
Lt ra

s
i

1
o

/6
s




Chapter 2: Entering the Matrix: Welcome to State Vectors

Covering all your bases: Bras and kets
as basis-less state vectors

The reason ket potation, [y, s 30 popular in guantum physics s that it
allows vou to work with state vectors in a basis-free wav, In other words,
vou're not stuck in the position basis, the momentum basis, or the energy
basis, That’s helpful, hecause most of the work in guantum physics takes
place in abstract caleulations, and you don't want to have to drag all the com-
ponents of state vectors through those calculations (often vou can't — there
may b infinite possible states in the problem vou're dealing with).

For example, sav that vou're representing your states using posilion vectors
in a three-dimensional Hilbert space — that is, you have x, v and z axes,
forming a position &asis for vour space, That's fine, but not all vour calcula-
tions have to he done using that position basis,

You may want to, for example, represent vour states ina three-dimensional
momentum space, with three axes in Hilbert space, p. g, and p_. Now you'd
have to change all yvour position vectors to momentum vectors, adjusi-

ing ecach component, and keep track of what happens to every component
throwgh all vour caleulations.

So Dirac's braket notation comes to the rescue here — vou use it to perform

all the math and then plug in the various components of vour state vectors as
negded at the end, That is, vou can perform yvour calculations in purely sym-

bolic terms, without being tied to a basis,

And when you need to deal with the components of a ket, such as when vouw want
to get phvsical answers, vou can also convert kets to a different basis by taking the
ket's components alomg the axes of that basis. For example, if vou want o convert
the kel s 1o the position basis, as represented by i j, and &, which are position-
unit vectors along the x v, and 2 aes, vou can just find the three components of
|y abomg i, f, and k for the new version of the ket, 6=, Here's how that looks in
general, where ¢ are undt vectors in the basis you're switching to;

92X <vio, >

Understanding some relationships
using kets

Eet notation makes the math easier than it is in matrix lerm because you can
take advantage of a few mathematical relationships. For example, here's the
so-called Schwarz inequality for state vectors:

31
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|-_' |||.r|.5.'| hl: = l,l-"llglil' o 'ﬁl'.'f}

This says that the square of the absolute value of the prodact of two state
wvectors, |=y =17 is less than or equal to <y lyeedlés. This tums oot the be
the analog of the vector ineguality:

|a-B] = |a |B]
5o why is the Schwarz inequality so useful? It turns out that you can derive
the Heisenberg uncertainty principle from it (see Chapter 1 for more on this

primcijle),

Chber ket relationships can also simplify vour caleulations. For instance, two
kets, [y and [d=, are said to be onthogonal i

o=

Amd two kets are said to be onthonamnal if they meet the following conditions:
g ==
[ |;.5I|w}= |

P {ﬁl|p}=1

With this information in mind, vou're now ready to start working with operators.

Grooving with Operators

What about all the calculations that you're supposed to be able 1o perlorm
with kets? Taking the product of a bra and a ket, <y lde, is fine as far as it
goes, but what about extracting some phyvsical quantities vou can measure?
That's where aperators come in.

Hello, operator: How operators work

Here's the dgeneral definition of an operator A in quantum physics: An open-
far is a mathematical rule that, when operating on a ket, |y=, transforms that
ket into a new ket, |y'= in the same space {which could just be the old ket
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multiplied by a scalar), 3o when vou have an operator A, it transforms kets
like this:

A=y =
For that matter, the same aperator can also transform bras:

-:|,|.r;5.=-:|;f

Here are several examples of the kinds of operators you'll see:

#* Hamiltonian (H)y: Applying the Hamiltonian aperator (which looks differ-
ent for every different physical situation) gives you E, the energy of the
particle represented by the ket Iy E is a scalar quantity:

H|w:~—E.|I:u':

w# Lnity or identity {I}: The unity or identity operator leaves kets
unchanged:

o= >
i Gradient (V) The gradient operator works like this:
] _.d d o
T|w}_ﬂ l,u':b.'—Elm'::_H Ehﬂnk

# Linear momentom (P} The linear momentum operator looks like this in
quantum mechanics:

I-‘||,|zn'::-=—:'.l'r"rr T

P Laplacian (4): You use the Laplacian operator, which is much like a sec-
and-order gradient, to create the energy-finding Hamiltonian operator:

II.-|l.|'

w;=&|wr=%|w;- r{_.'il—J__ W r%lw;

33



34 Part I: Small World, Huh? Essential Quantum Physics

In general, multiplying aperators together is not the same independent of
order, 5o for the operators A and B, AH = BA,

And an aperator A is said to be linear if

A{cl T +c=||,5r:r]|=:lﬁ;|1,!.r:=-+¢:‘._.ﬂl|uf::~

1 expected that: Finding
expectation values

Given that everything in quantum physics is done in terms of probabilities,
making predictions becomes very important. And the biggest such prediction
is the expectation value. The expectation value of an operator is the aver-
ade value that vou would measure i vou performed the measurement many
times. For example, the expectation value of the Hamiltonian operator (see
the preceding section is the averase energy of the svstem vou're studying.

s The expectation value is a welghted average of the probahbilities of the sys-
l-' tem’s heing in its various possible states. Here’s how you find the expectation
wvalue of an operator A;

Expectation value =< qﬁrl A | g

Note that because yvou can express =yl as a row operator and Dy as a
column vector, vou can express the operator A as a square matrix,

For example, suppose vou're working with a pair of dice and the probabilities
of all the possible sums (see the earlier section “Creating Your Chwn Vectors
in Hilbert 2pace”). In this dice example, the expectation value s a sum of
terms, and each term is a value that can be displaved by the dice, multiplied
by the probability that that value will appear.

The bra and ket will handle the probabilities, soit’s up to the operalor that
vou create for this — call it the Roll operzior, K — (o store the dice values
{2 through 1Z) for each probability, Therefore, the operator R looks like this:
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R=

OO0 O0 0000
D30 00000000
0 A 0 o000 do
DOo03 000000
GO0 O0600GO00D0
DOo000TD 000
O000008MO000
QOO0 on%odo
DOo00O00 000
Qoo dgoo0dollo
o000 00 00012

So to find the expectation value of B, vou need to calculate <y | K ly=, Spelling
that out in terms of components gives vou the following:

L PR
Loghs abs as shS RS 55 g ass ghy R0 00D Re s B onoD A
L6 et FROSR Ah SE R TR 1] A FROSED T o0 o009 d 0N UJI""
Do 400000 d 0 0SB
oo s 00 e e oo oaah
nnnur.n-:--:-nunhj"'
LU T | T | Y | s = I ¥ I 1 n ul/&
nooonDnwmd a0 0
|,||||||||||,||,;-~:--|,||||,|I""-i
nnnunn-:-culnunﬁ}l’_:
LT T I VI T O 1 S
EEREEEE RN e
A
3t
6
_1'._.-"
i
L
=

Ding the math, vou get

< wRig==7
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S0 the expectation valee of a roll of the dice is 7. Now vou can see where the terms
frr and Eef come from — they *bracket™ an operator to give you expectation
values, [n fact, the expectation value ks such a common thing to find that
vou'll often find <y |R y= abbreviated as <R-, 50

e ]

Looking at linear operators
An aperator A is said to be Snear i it meets the following condition:
Ale, e + L) = e A lye= + e Ay

For ingtance, the expression |d=<g | is actually a linear operator. To see fhat,
apply l§=<y! toa ket, 3=

65 ¥|z>

You ean also write this as

< wg:—lﬁ-}

The expression <yl g~ i5 always a complex numhber (which could be purehr
real), so this breaks down to

clp=

where ¢ i5 a complex number. Thus, [g=<y! Is indeed a linear operator,

Going Hermitian with Hermitian
Operators and Adjoints

The Hermitian adioinl — also called the adioint or Hermition conjugale — of
an operator A is denoted AT To lind the hermetian adjoint, follow these
steps:

1. Replace complex constanis with thelr complex conjugates.

The Hermitian adjoint of 2 complex number is the complex conjugate of
that number;
I

ol e



Chapter 2: Entering the Matrix: Welcome to State Vectors 3 7

2. Replace kets with their corvesponding bras, and replace bras with
their corresponding kets.

You have to exchange the bras and kets when finding the Hermitian
adjoint of an operator, 50 finding the Hermitlan adjoing of an operator is
not just the same as mathematically finding its complex conjugate,

3. Replace operators with their Hermitian operators.

Inn guantum mechanics, operators that are equal to their Hermitian
adjoints are called Hermition operators. In other words, an operator is
Hermitian if

Al=A
Hermitian operators appear throughout the book, and they have spe-
cial properties. For instance, the matrix that represents theim may be
dicgonalized — that is, written 5o that the only nonzero elements appear
along the matrix's diagonal. Also, the expectation value of a Hermitian

operator s guaranteed 1o be a real number, not complex (see the earlier
section "l expected that; Finding expectation values™).

4. Write your final eguation.

<w|A'|e==<p|Aly

Here are some relationships concerming Hermitian adjoints;
o [a.ﬂl]l =a Al
o [AT) = A
o [A+B) = A 4B
e [AB] =BA

> [ﬁ.H|w}}|l =<yl A

Forward and Backward:
Finding the Commutator

II
G

The measure of how different it s to apply operator A and then B, versus B
and then A, is called the operators’ commutafor. Here's how vou define the

commutator of operators A and B

[A, B] = AB - BA
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Commuting

Two operators commute with each other If thelr commutator is equal to zero,
That iz, it doesnt make any difference in what order vou apply them;

[A. B] =0
Mote in particular that any operator commutes with itsel:
[A A]l=0

And it's easy o show that the commutator of &, B is the negative of the com-
mutator of B, A

[A B] ==[B, A]

It’s also true that commutators are linear — that is, Alc [y« o, =) = ¢ Al g
+ A s

[AB+C+D+_]=[AB)+[AC]+[AD]+..

And the Hermitian adjeint of a commutator works this way:
[aB] =[B, A

You can also find the anticommutator, [A, Bf:

1A BJ = AB + BA

Finding anti-Hermitian operators

Here's another one: What can vou sayv about the Hermitian adjeint of the com-
mutater of two Hermitian operators? Here's the answer. First, write the adjoint:

[a8]

The defirition of commutatars tells von the following;

[, 8] ~(A- )

You know (ABEY = BTAT (see Lthe earlier section "Going Hermitian with
Hermitian Operators and Adjoints™ for properties of adjoints). Therefore,

[AB] ={AB-BA} =B'A'- A'B'



\
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But for Hermitlan operators, A = AT, 50 remove the "symbols;
[A. B]I = [AH—HA]I =BTAT-ATB" =BA - AB

But BA - AB is just —[ A, B], s0 vou have the following:

|aB] - {aB]

A and B here are Hermitian operators. When you take the Hermitian adjoint of
an expression and get the same thing back with & negative sign in front of it,
the expression is called qni-Hermifion, 5o the commutator of two Hermitian
pperators is anti-Hermitian. {And by the way, the expectation value of an anti-
Hermitian operator is guaranteed to be completely imaginary.)

Starting from Scratch and Ending Up
with Heisenberg

If your've read through the last few sections, vou're now armed with all this
new technology: Hermitian operators and commutators, How can you put it
to work? You can come up with the Heisenberd uncertainty relation starting
virtually from scratch,

Here's a calculation that takes you [rom a few basic deliniticns to the
Helsenberg uncertainty relation. This kind of calculation shows how much
easier il is 1o use the basis-less bra and kel notation than the [ull matrix ver-
sion of state vectors, This isn’t the kind of calculation that you'll need to do
in class, but follow it through — knowing how (o use kets, bras, commuta-
tors, and Hermitian operators §s vital in the coming chapters,

The nuncertainty in a measurement of the Hermitian aperator named A is for-
mally diven by

.-"nﬁ.:[-:: Al=—x A::-“]I"

That is, AA is equal to the square root of the expectation value of A* minus
the squared expectation value of A, If you've taken anv math classes that
dealt with statistics, this formula may be familiar to yow, Similarly, the uncer-
tainty in a measurement using Hermitian cperator B is

,-:LH=|::-=:EI-:}—-::H-}'"} !

Chapter 2: Entering the Matrix: Welcome to State Vectors
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MNow consider the operators AA and AB (nof the uncertainties AA and AB any-
maore), and assume that applving AA and AR as operators gives you measure-
ment values like this:

AM=A- A=

AB=B-<B:

Like anv operator, using A and AE can result in new kets:

AA|w==|x>

AB |y = |.;. =
Here's the kev: The Schwarz inequaility (from the earlier sectlion
"*Understanding seme relationships using kets™) gives vou

=¥ ,r::-::q!l|¢-}2 -=:l.u'|dl:=- -
Sovon can see that the inequality sign, =, which plays a big part in the
Heisenberg uncertainty relation, has already crept into the caleulation.
Because AA and AB are Hermitian, =y |y= is equal to <y | AN Dys= and <5 1§ is
equal o =y AR (ws, Because AAT = AA (the definition of a Hermitian operalor),

vou can see that

< x| == p|AATAA |y

This means that

-.:;.-_fl;{ »=a l,rr|i'..-!|.'.ﬁ.-!|.|||:-r}={ uﬂ.ﬂt"ll,:-r}
That is, <¥ |7 i5 equal to <AA%> and <0 ¢ = is equal to <AB, S0 you can
rewrite the Schwarz inequality like this;

< AAT =< AB® 5 2|< AAABS

Cheay, where has this gotten vou? Its time to be clever. Note that you can
write AAAE as

m.au%[mau]-%{mw}
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Here, [AA AB) = AAAB + ABAA s the anticommutator of the operators AA and
AB, Because [AA, AB] = [A, B] (the constants <A= and <B= subtract out), you
can rewrite this equation:

Mﬁﬂ:%l.&,ﬂ]-%{ﬂﬁ,.ﬁ]}}

Here's where the math gets intense, Take a look at what you know so far;

# The commutater of two Hermitian operators, [A, B, is anti-Hermitlan,
e The expectation value of an anti-Hermitian is imaginary.

e IAA AR is Hermitian.

 The expectation value of a Hermitian is real.

All this means that vou can view the expectation value of the equation as the
sum of real {{AA, AB]) and Imaginary ([ A, B]) parts, so

=

[ anaps| = L[ a B o[ + Ljfan an}|

And because the second term on the right is positive or zero, you can say
that the following is true:

< AAAB:] “.-:ﬂ-:.[ﬁ.. B]=
Whew! But now compare this equation to the relationship from the earlier
use of the Schwarz inequality;

< AAT e AR 32|-:B£|A&:r|=
Combining the bwo equations gives vou this:

-:.ﬁ.A‘”HﬂB"bzﬂ-:A_ﬂb-r

This has the look of the Hetsenberg uncertainty relation, except for the pesky
expectation value brackets, < =, and the fact that AA and AB appear squared
here, Youw want to reproduce the Heisenberg uncertainty relation here, which
looks like this:

AxAp =

o |2

41
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Cayv, 50 how do vou get the left side of the equation from <AA - <AB- to
AMAABY Because an earlier equation tells vou that AA = A — <A=, you know the
following:

SAAT m o AT At - AN

Taking the expectation value of the last term in this equation, vou get this
result:

wAA e AN e A e B A s AT AT

Square the earlier equation AA = (<A% - <A=")1" to get the following:
AR e AT A
And comparing that equation to the before it, vou conclude that
AR m= AT
TAAT s < AR = 2 e[ A H]-,-|"
Cool. That result means that 4 ' becomes

ARTARY = % =[aB]s

This inequality at last means that

AMAE 2 %Hﬁ, BJ:|

Well, well, well., 8o the product of two uncertainties is greater than or equal
to s the absolute value of the commutator of their respective operators?

Wow, Is that the Heisenberg uncertainty relation? Well, take a look. [n quan-
tum mechanics, the momentum operator looks like this:

P = -tV
And the operator for the momentum in the » direction is

- EI
P ==
x the

.

5o what's the commutator of the X operator {(which just returns the x posi-
tion of a particle) and P 7 [X. P ] = =, 50 from AAAR = % -:[.-5.. BJ}|. yo get
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this next equation (remember, Ax and Ap here are the uncertainties in x and
Ap , not the operators):

h
AxAp, = 5

Hot dog! That is the Hetsenberg uncertainty relation, (Notice that by deriving
it from scratch, however, vou haven't actually constrained the physical world
through the use of abstract mathematics — yvou've merely proved, using a
few basic assumptions, that you can't measre the phoesical world with per-
fect accuracy.)

Eigenvectors and Eigenvalues:
They're Naturally Eigentastic!

As vou know if you've heen following alonig in this chapter, applving an oper-
ator to a ket can result in a new ket:

A

l|!|"2b-=|l];'.'-‘l-

Ta make things easier, vou can work with eigenvectors and eigenvalues (eigen
is German for "innate” or "natural”™). For example, [y 8 an eigenvechor of the
nperator A il

# The number a is a complex constant
B Ali,v:: = alq:-r:»

Mote what's happening here: Applying A to one of its eigenvectors, [ys, Jives
vaou [y back, multiplied by that eigenvector's gencalwe, a.

Althongh @ can be a complex constant, the elgenvaluies of Hermitian opera-
tors are real numbers, and their eigenvectors are orthogonal (that is, <yl ¢=
=10.

Casting a problem in terms of eidgenvectors and eigenvalues can make life a
lot easier because applying the operator to its eigenvectors merely gives you
the same eigenvector back again, multiplied by its eigenvalue — there’s no
pesky change of state, so yvou don't have to deal with a different state vector,

43
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Take a lock at this idea, vsing the R operater from rolling the dice, which is
expressed this way In matrix form {see the earlier section "I expected that:
Finding expectation values™ for more on this matrix):

K=

0000000000
d3icodo000O0O0O0
O a0Do00dhn
doos0000000
GOoOO6E000000
o000V OoOQROG0
o000 0BOGOOO
dPooooo0DFD00
00000000000
ooOoondalo
DO0000000 02

The K eperator works in 1l-dimensional space and is Hermitian, so there'll be
11 orthogonal eigenvectors and 11 corregponding eigenvalues.

Becavuse R is a diagonal matrix, Anding the elgenvectors is easy, You can take
unit vectors in the eleven different directions as the eigenvectors. Hera's
what the first eigenvector, £, would look like:

= e e = AW

=
—

===
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And here's what the second eigenvector, '=='<" would ook like:

And 50 on, up to§

§-|=

Mobe that all the eigenvectors are orthogonal.

And the eigenvalues? They're the numbers you get when you apply the R
operalor Lo an eigenvector. Because the eigenvectors are just unit vectors in
all 11 dimensicns, the eigenvalues are the numbers on the diagonal of the R
matrix: 2, 3, 4, and 50 on, up to 12,
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Understanding how they work

ﬁ'ﬂjp The elgenvectors of & Hermitian operator define a complete set of orthonormal
/2 .x“*. vectors — that 15, a complete basis for the state space, When viewed in this

ﬂ/l “elgenbasis,” which is built of the elgenvectors, the operator in matrix format s
diagonal and the elements along the diagonal of the makrix are the eigenvalues,

This arrangement is one of the main reasons working with eigenvectors is so
usedul; your original operator may have looked something like this (Yofe: Bear in
mind that the elements in an operator can also be functions, not just numbers’):

R=

O0106 0030000
Dl1oD0940d00
400012002000
SO000007 0000
DOB0D6E000OEDD
10305000008
o000 oEd0N0D0
o000 0dSO00
Doo0DHon0dDTT
DOo0oNnedoedlo0
OO7TO00080000

By switching to the basis of eigenvectors for the cperator, you diagonalize
the matrix into something more like what you've seen, which is much easier
bo work with:

B=

200000000000 00 00 0D 0000
P3F0o00000000
dPo400000000
POo0LGO0na0n
POO0&EOO0O0DDO0OO0
oo T0naad0
dO0O00OOE0D000
doO00O009000
o000 000 000
o000 00nDdI110
I I
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4HF

You can see why the term eigen is applied to eigenvectors — they form a
natural basis for the operator,

If twor or more of the elgenvalyues are the same, that eigenvalue is said to be
degenengle, 30 for example, if three eigenvalues are equal ta B, then the elgen-
value & Is threefold degenerate,

Here's another cool thing: I two Hermitian operators, A and B, commute, and
if Adoesn't have any degenerate cigenvalues, then cach eigenvector of A is

also an eigenvector of B, (See the earlier section “Forward and Backward:
Finding the Commutabor™ for more on commuting.)

Finding eigenvectors and eigenvalues

S0 given an operator in matrix form, how do vou find its eigenvectors amd
elgenvalues? This is the equation you want to solve:

Aly==aly=
And you can rewrite this equation as the following:
[ A—al)w==10

I represents the identity matrix, with 1s along its diagonal and (s otherwise;

=

I G000 0000 0.
1 0 0 O 0o 0 O 0.
01 00000 d d.
D T A O I 1 I T
LU U VI F I O U VA | VI
oo ool 0000

The solution to (A = al) 1y = O exists onlv if the determinant of the matrix A -
alis &

det{A—al) =1

b7
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Finding eigenvalues

Any values of o that satisiy the equation det{A —al) = O are eigenvalues of the
criginal equation. Try to find the eigenvalues and eigenvectors of the follow-
ing matrix:

-1 -1

A=
2 4

First, convert the matris into the form A - al:

=l-a =1
2 —-4-a

A-—al=

Mext, find the determinant;

detlA—al) = (-1 —a)(-4 —a) + 2
detiA—all = +3a -6

And this can be factored as fallows:
detfA=all=a” +3a+6={g+2ZWa+I)

You know that det(A = al) = 00, s0 the eligenvalues of A are the roots of this
equation; namely, a, = -2 and a, = -3,

Finding eigenveciors

How about finding the eigenvectora? To find the sigenvector corresponding
to . (see the preceding section), substitute @, — the first eigenvalug, -2 —
into the matrix in the form A - al:

-l-a -1
A —al
“ 2 _—d-a
A—ar=| 7!
2 =2
[A—al)y==0
5o you have
1 —lffg [ =[O
2 =l |0
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Because every row of this matrix equation must be true, vou know that y, =
yr,. And that means that, up to an arbitrary constant, the eigenvector corre-
sponding to a, is the following:

1
1

C

Drop the arbitrary constant, and just write this as a matriz;
[l
i

How about the eigenvector corresponding to a,? Plugging a,, =3, into the
matrix in A —al form, vou get the following,

A-al=2 -1
2 -1

S0 2y —wy, =0, and w, =y, + L And that means that, up to an arbitrary con-
stant, the eigenvector corresponding to a, is

Then yvou have

2 -1
2 -l

¥,

w,| [0

n‘

1
2

[

Drop the arbitrary constant:

1

Py

S0 the eigenvalues of this next matrix operator

A=-1 -1
2
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are a, = =2 and a, = =3 And the eigenvecior corresponding to a, is

1l
!

The eigenvector corresponding to a, is

1
2

Preparing for the Inversion: Simplifying
with Unitary Operators

Applving the inverse of an operator undoes the work the operator did:
ATLh = AN =]

Sometimes, finding the inverse of an operator is helpful, such as when vou

want to solve equations like Ay = y. Salving for x s easv if vou can find the

inverse of Ay = Ay

Howewver, finding the inverse of a large matrix often isn't easy, so guantum
physics calculations are sometimes limited to working with unitary opera-
tars, LI, where the operator’s inverse is equal to its adjoing, U = UT_ {To find
the adjoint of an operator, A, you lind the transpose by interchanging the
rows and columns, A", Then take the complex conjugate, A™ = AT This gives
you the following equation:

U= U =1
The product of two unitary operators, Uand V. is also unitary because
[V (VY ={Uv (V0T = D ww T juT = U =1
When you use unitary cperabors, kets and bras transform this way:
o ||,|:-"' == Ull,!"}

9> =<yl
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And vou can transform other operators using unitary operators like this;
A"=UALY
Mote that the preceding equations also maan the following:
o |y==u|y
o url = |,u’|l.1

pr A=1 AT
I:( Here are some properties of unitary transformations:

1§ an operator (8 Hermitian, then its unitary transformed version, A =
UALT, is alsp Hermitian,

= The eigenvalues of A and its unitary transformed version, A" = UALT, are
the same,

= Commutators that are equal o complex numbers are unchanged by uni-
tary transformations: [A', B'] = [A, B].

Comparing Matrix and Continuous
Representations

Werner Heisenberd developed the matrix-oriented view of quantum physics
that vou've been using so far in this chapter. It's sometimes called mabix
mechamics. The matrix representation is fine for many problems, buot some-
tirnes vou have to go past il as you're aboul Lo see,

Cme af the central problems of quantum mechanics is to calculate the energy

levels of a svstem, The energy operator is called the Hemiliiondan, H, and

finding the energy levels of a system breaks down to finding the eigenvalues
of the problem:

Hiw==E =

Here, E is an eigenvalue of the H operator,
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Here's the same equation in matrks terms;

det

M

H H,
.—E H, H,

H H

H H

-E

H

The allowahle energy levels of the phvsical system are the eigenvalues E,

That’s fine if you have a discrete basis of eigenvectors — If the number of
energy states is finite, But what if the number of energy states is infinite? In
that case, you can no longer use a discrete basis for vour operators and bras
and kets — vou use a confinuows basis.

Going continnous with caleulus

Eepresenting quantum mechanics in a continuous basis is an invention of the
physicist Erwin Schrddinger. In the continuous basis, summations become
integrals, For example, take the following relation, where [ is the identity
matris:

¥le, < |=1
=]

It becomes the following:
]:&uln_ﬂﬂ ::--::.;:n,| = |

And every ket |y can be expanded in a basis of other kets, la =, like this:

> Jarlo,_ <, [vr>

Doing the wave

Take a look at the position operator, B, in a continuous basis. Applying this
operator gives you r, the position vector:

R|w==r|p=
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In this equation, applving the position operator to a state vector returns the
locations, v that & particle may be found at. Youw can expand any ket in the
position basis like this;

|ur:==fd'r|r':-{r||,u::~

And this becomes

|l,u';= id'rw[r”r:-:rllp =

Here's a very impaortant thing to understand; yir) = <rly= is the wape fnckion
for the state vector [ye — it's the ket’s representation in the position basis.
(r in commaon terms, it's just a function where the quantity [y} 2d%r repre-
sents the probability that the particle will he found in the vegion o7 at r

The wave function is the foundation of what's called weve mechanics, as
opposed to matrix mechanics, What's important to realize is that when vou
talk about representing phvsical systems in wave mechanics, you don't use
the basis-less bras and kets of matrix mechanics: rather, vou usually use the
wave function — that s, bras and kets in the position basis.

Therelore, vou do from talking about [y to <rly=, which eguals (e, This
wave function appears a lot in the coming chapters, and it's just a ket in the
position basis. 30 in wave mechanics, Hlw= = Elwy = becomes the fallowing:

q:.r|H p==E<r wx>
You can write this as the following:
-:r||! Ijf o El,!-"[TJ

But what is «rl H =7 11"s equal to Hy{r. The Hamiltonian operator, H, is the
tolal emergy of the system, kKinetic (p°/2m) plus potential (Vir)) 50 vou get the
lollowing equation:

PR
H_Em+".{rj

53
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But the momentum cperator (s

Pl == m% e+ i'h%l,:-f:-j+ m-% Wk

Therefore, substituting the momentum operatar for p givies you this:
¢ e
—4——4—— &V|r
Em [ dy® gzt ] l' }I

Lising the Laplacian operator, you get this equation:

+d'_ 1 =

ay"

You can rewrite this equation as the following (called the Schmdinger equation):

Hu(r | = %ﬂwfr] +V(r)w(r)=Ew(r)

Soin the wave mechanics view of quantum physics, you're now working with
a diflerential equation instead of multiple matrices of elements. This all came
from working in the position basis, w7 = <rly= instead of just [y,

The quantum physics in the rest of the book is largely about solving this dif-
ferential equation for a variety of potentials, Vi), That iz, vour focus s on
finding the wave function that satisfies the Schrddinger equation for various
physical systems. When vou sobve the Schradinger equation for wir), you can
find the allowed energy states for a physical system, as well as the prohabil-
ity that the system will be in a certain position state,

Mobe that, besides wave functions in the position basis, vou can also give a
wave function in the momentum basis, w(p), or in any number of other bases,

< The Heisenberg technigue of matrix mechanics (s cne way of working with
guantum physics, and it’s best used for physical systems with well-defined
energy states, such as harmonic oscillators, The Bchrddinger way of looking at
things, wave mechanics, uses wave functions, mostly in the position basis, to
reduce questions in guantum physics to a differential equation,
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In this part . . .

his part is where you get the lowdown on ong of gquan-

tum physics’ favorite topics: sobving the energy levels
and wave lunctions for particles trapped in various bound
states. For example, you may have a particle trapped in a
square well, which is much like having a pea ina box. Or
vou may bave a particle in harmonic oscillation. Quantum
physics is expert at handling those kinds of situations.




Chapter 3
Getting Stuck in Energy Wells

In This Chapter
Understanding potential wells
Working with infinite square wells
Determining energy levels
Trapping particles with potential barriers
Handling free particles

WEL’:".-; that, Lassie? 3tuck in an energy well? Go get help! In this chap-
ter, vou get to see quantum physics at work, solving problems in

one dimension. You see particles trapped in potential wells and solve for the
allowable energy states using guantum physics, That goes against the grain

in classical phvsics, which doesn't restrict trapped particles to anv particular
energy spectrum. But as vou know, when the world gets microscopic, quan-
tum physics takes over,

The equation of the moment i the Schrddinger equation (derived in Chapter 23,
which lets vou salve for the wave lonction, yix), and the energy levels, E;

B ()= ¥{r )y (r) = Ewir)

Looking into a Square Well

A squave well is a potential (that is, a potential energy well) that forms a
stuare shape, as you can see in Figure 3-1.
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¥
m

— -
Figqure 3-1:
B square

X
well, a

—

The potential, or V{x), goes to infinity at x = 0 and x = a (where x is distance),
like: this:

0 = e where x <0

VO =0, where =y = a

B Vix) = =, where x = a
Lising square wellz, vou can trap particles, If yvou put a particle Into a square
well with a limited amount of energy, it'll be trapped because it can’t over-

come the infinite potential at either side of the square well, Therefore, the
particle has to move inside the square well,

5o does the particle just sort of roll around on the boettom of the square well?

Mot exactly, The particle is in a bound state, and its wave lunction depends
on its energy. The wave function isn't complicated:

w{x':|=["'5/;] sinffx =123 .
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S0 vou have the allowed wave lunctions for the states o = 1, 2, 3, and 50 on,
The energy of the allowable bound states are given by the following equation:

E=tm g el 2,3

2mn

The rest of this chapter shows vou how to solve problems like this one,

Trapping Particles in Potential Wells

Take a look at the potential in Figure 3-2. Notice the dip, or well, in the poten-

tial, which means that particles can be trapped in it if they don't have too
much energy,

The particle’s kinetic energy summed with its potential energy is a constant,
equal to its total energy:

]
2 v-E
2m

It its total enerdy is less than ¥, the particle will be trapped in the potential
well, vou ses in Figure 3-2; to get out of the well, the particle’s kinetic energy
would have 1o become negative 1o satisly the equation, which is impossible.

v 3
1"';!
1"'|
—
Figure 3-2:
A patential
well, *
IEE—— % % *

59



60 Part |l: Bound and Undetermined: Handling Particles in Bound States

In this section, vou take a look at the various possible states that a par-

ticle with energy E can take in the potential given by Figure -2, Quantum-
mechanically speaking, those states are of two kinds — bound and unbound.
This section leoks at them In overview,

Binding particles in potential wells

Howned stafes happen when the particle isn't free to travel to infinity — if's as
simple as that. In other words, the particle is confined to the potential well.

A particle traveling in the potential well you see in Figure 3-2 is bouand if

its energy, E, is less than both V, and V.. In that case, the particle moves
between x, and x,. A particle trapped in such a well is represented by a wave
function, and vou can solve the Schrédinger equation for the allowed wave
functions and the allowed energy states, You need to use two boundary con-
ditions {the Schrédinger equation is a second-order differential equation} to
solve the problem completely.

Bownd states are discrefe — that is, they form an energy spectrum of discrete
eneridy levels. The Schridinger equation gives yvou those states. In addition,
in one-dimensional problems, the enerey levels of a bound state are not
degenerate — that is, no two energy levels are the same in the entire energy
Spectrum.

Escaping from potential wells

Il a particle’s energy, E, is greater than the potential ¥V, in Figure 3.2, the par-
ticle can escape from the potential well. There are two possible cases:
V= E«<V_ and E = V,. This section looks at them separately.

Case 1: Energy between the two potentials (V, < E< V)

TV, < E <V, the particle in the potential well has enough energy L over-
come the barrier on the left but net on the right. The particle is thus free to
move to negative infinity, 8o its allowed x regfion Iz between == and x|

Here, the allovwed enerdgy values are continuons, not discrete, because the par-
ticle isn't completely bound, The energy eigenvahies are not degenerate —
that is, no two enerdy eigenvalues are the same (see Chapter 2 for more on
cigenmvalues ),

The Schrédinger equation is a second-order differential equation, 5o it has
twa linearly independent solutions; however, in this case, only one of those
solutions is physical and doesn't diverge,
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The wave equation In this case turns out to oscillate for x < x, and to decay
rapldly for x = x,.

Case 2: Energy greater than the higher potential (E > V,)

ME =V, the particle isn't bound at all and is free to travel from negative infin-
ity to positive infinity.

The energy spectrum §s continucus and the wave function turns out to be a
sum of & function moving to the right and one moving to the left, The energy
levels of the allowed spectrum are therefore doubly degenerate,

That's all the overview vou need — time o start solving the Schridinger

equation for various different potentials, starting with the easiest of all: infi-
nite square wells.

Trapping Particles in Infinite
Square Potential Wells

Infinite sgquare wells, in which the walls g0 to Infinity, are a favorite in physics
prohlems. You explore the quantum physics take on these problems in this
section,

Finding a wave-function equation

Take a look at the infinite square well that appears back in Figure 3-1. Here's
what that square well looks like:

Vi) = =, where x < ()
V) =0, wherel<x < a

W) = o, where x =g

The Schradinger equation looks like this in three dimensions;

%r'r:ﬂwl[r]- V{rur{r]=Ey(r)

Writing out the Schridinger equation gives vou the following:

A Ca S CRTEed
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You're interested in only one dimension — x (distance) — in this chapter, 50
the Schridinger equation looks like

Sy (x) V() =Ew(x)

Because Vix) = 0 inside the well, the equation becomes

=h"d’ =
2m ac ¥ 1) =Evix)

And in problems of this sort, the equation is usually written as

i 1 _
o wlx)+ ki x)=0
where &° = Egi,E (% is the wave number]).

So now vou have a second-grder differential equation to solve for the wave
function of a particle trapped in an infinite square well.

You get two independent solutions becavse this equation iz a second-order
differential equation;

y(x) = A sinffx)
yr () = B cos(x)

A and B are constants that are vet to be determined.

_.-i-
| @ The general solution of ;— p{ x|+ &y x ) =0s the sum of ¥ [+ and w, (2]

i) = A SInCEx) « B coslier)

Determining the energy levels

The equation ywix) = A sinfkx) « B cos{kx) tells you that you have to use the
boundary conditions to find the constants A and B (the preceding section
explaing how to derive the equation). What are the boundary conditions? The
wave function must disappear at the boundaries of an infinite square well, so

b () =
o ) = 1)
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The fact that w0 = 0 tells vou right away that B must be zero because
cos(F) = 1, And the fact that w(a) = 0 tells vou that wia) = A sin(ka) = 0,
Because sine is zero when its argument is a multiple of =, this means that

Bt = n=01L23..

Mote that although a = 0 s technically a solution, it vields i) = (, 50 it's not
a physical solution — the phyvsical solutions begin with = 1,

This equation can also be written as

And because & = 2ZmE/%*, vou have the following equation, where i = 1, 2,
3y o — those are the allowed energy states. These are quantized states,
corresponding to the quantum nembers 1, 2, 3, and so0 on:

2mE _ '’
h i’
po i
2ma’

Mote that the first phorsical state corresponds to n = 1, which gives you this
next eoguation:

_ =’
mat

This is the lowest physical state that the particles can ccoupy. Just for Kicks,
put sorme numbers into this, assuming that yvou have an electron, mass 9.11 =
1 kilograms, confined toan infinite square well of width of the order of
Hohr redios (the average radius of an electron’s orbit in a hvdrogen aton),

about 107 meters.

F= _ﬁ'r": iives yvou this energy for the ground state;
P

(105 x 107 (3.14)
Le=600x107" Joules
2(9.11 = ]D"']UD"- :
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That's a verv small amount, about 4.0 electron volts eV — the amount of
energy one electron gains falling through 1 velt), Even so, it's already on the
order of the energy of the ground state of an electron in the ground state of
a hvdrogen atom (13,6 eV}, so vou can say yvou're certalnby In the right quan-
tum physics ballpark now,

Normalizing the wave function

Okay, vou have this for the wave equation for a particle in an infinite square
well:

wia|=A E-In{ ALES ]

a

The wave function is a sine wave, going 1o zero at x - Dand x - @, You can see
the first two wave functions plotted in Figure 3-3,

I i
Figure 3-3; /

Wave /
functions
in a squars
well. T
I L)
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Mormalizing the wave function lets you solve for the unknown constant A. In
a normalized function, the probability of finding the particle between x and
dr, Iyl ) =dy, adds up to | when you integrate over the whole square well,
x¥elltoxs=a

1= flyfx]) o

Substituting for wix} gives vou the following:

1=|A| !sin’{ﬂuﬁ}k

Heres what the integral in this equation equals;

i’ ﬂ =0 4
Jsin [ 2 oy
So from the previcus equation, 1 = |A|{%] Salve for A:
1
A =[g J :
i

Therefore, here's the normalized wave equation with the value of A plugged in;

i

w{r}:{gféjlealn[m] n=1273..

And that's the normalized wave function for a particle in an infinite sguare well,

Adding time dependence
to wave functions

Mow how about secing how the wave function for a particle in an infinite
square well evolves with time? The Schrddinger equation looks like this:

S aw(r)= Vir)wlr)=Eu(r)

65
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You can also write the Schrddinger eguation this way, where H is the
Hermitian Hamiltonian operator;

Hyr{r) = Ewr[r}

That’s actually the fmetnadependent Schradinger equation, The me-dependenf
Sehrodinger equation looks like this:

iﬂ% |,Lr[r, r}|=H|,|.r|:r, r}

Combining the preceding three equations gives you the [ollowing, which is
another lorm of the time-dependent Schrddinger equation:

1 . (TRT, |
miw[r. f}:Eﬂ.m‘{f. .rl|+'|.'f.r. r]i,sr[r. :J.

And because you're dealing with only one dimension, x, this equation
becomes

-k d

.iﬁr']iw[x, r]|= i wix, t)+ V|, r]a,!.r[x. r}

This is simpler than it looks, however, because the potential deesn’t change
wilh time. [n [act, because E is constant, vou can rewrite the equation as

EM;F[I-IFEW[*’-*’}

That equation makes life a lot simpler — it's easy to sobve the time-dependent
Sehrodinger equation if you're dealing with a constant potential, In this case,
the solution is

Wi )= x)e

Meat. When the potential dossn’t vary with time, the solution to the time-
dependent Schrddinger equation simply becomes yix), the spatial part. multi-
plied by & the time-dependent part.
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So when you add in the time-dependent part to the time-independent wave
functioen, vou get the time-dependent wave function, which looks like this:

wix, ’J=[%J 5in[%}"m’ =123 .

The eneripy of the ath quantum state is

E—% a1 23 ..
¢

Therefore, the result is

Wi ) [%]l’sm[%]mp[m] n=1,2,3 .

2rna’
whiere L‘H]J{ ::'}| =g".

Shifting to symmetric square
well potentials

The standard infinite square well looks like this;

OV = o where x <0

e V) =0, wherel2x < g

#* Vi) = =, where x = a
But what if you want to shift things so that the square well s symmetric around
the origin instead? That is, you move the square well so that it extends from
=l o ofs? Here's what the new infinite square well looks like in this case;

eV x) = =, where x = —:

W) = 0, where =2 x20):

V) =, where xo=7f:
You can translate from this new square well Lo the old one by adding =/ to x,

which means that you can write the wave function for the new square well In
this equation like the following:
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vix)=|(2 ]".q-m[%[“% || n-rzs

Droving & litkle trig gives vou the following equations:

w{:_j-[%]lzcm[%m] n=135...

n=24.6...

S0 as you can see, the result is a mix of sines and cosines. The bound states
are these, in increasing quantum order;

Ao 50 on.

Note that the cosines are svmmetric around the origin: wix) = y-x). The
Sines are anti-symmeteic: —yix) = pi-x.

Limited Potential: Taking a Look at
Particles and Potential Steps

Truly infinite potentials {which | discuss in the previows sections b are hard
ta come by. In this section, yvou look at some realworld examples, where
the potential is set to some finite ¥V not infinity. For example, take a look at
the situation in Figure 3-4. There, a particle is traveling toward a potential

step. Currently, the particle is in a region where % = 0, but iUl soon be in the
region Vo=V,



|
Figura 3-4:
A patential
stap, E =W,
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There are two cases to look at here in terms of E, the energy of the particle:;

= E = V1 Classically, when E = ¥, you expect the particle to be able to con-
tinue on to the region x = 0,

e E e Vo When E = V| vou'd expect the particle to bounce back and not be
able to get to the region x = (Fat all.

In this section, vou start by taking a look at the case where the particle’s
energy, E, is greater than the potential ¥V, as shown in Figure 3-4; then you
take a look at the case where B <V,

Assuming the particle has
plenty of energy

Start with the case where the particle’s energy, E, is greater than the poten-
tial V.. From a guantum physics point of view, here's what the Sehridinger
equation would look like:

# For the region x < ﬂ:%‘-[rﬁk,’w,{;rk 1]

: o 2mE
Here, k& Ihr
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£

# For the region x = O; if’ [x)+ b wr, | x)=0

In this equatton, & ° = Em{E— Vi 1"/

SR

In other words, kis going to vary by region, as vou see in Figure 3-3,

i/_\ " / \l"x,x "

|| | f III'II

AN/

Figure 3.5:
Thie value of

k by reqgian,
wihara
ExV,

.| 0

Treating the first equation as a second-order differential equaticon, vou can
see that the most general selution is the following:

W (x) = A s Be®e, where x < 0
And for the redgion x = {1, solving the second equation gives vou this;
W x) = Ce™ s De ™ where x = (0

Note that e™ represents plane waves traveling in the -x direction, and ¢
represents plane waves traveling in the =x direction.
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What this solution means is that waves can hit the potential step from the
left and be either transmitted or reflected, Given that way of locking at the
problem, vou may note that the wave can be reflected only going to the right,
not ko the left, so D must equal zerp, That makes the wave equation become
the following;

# Where x < Oy (x) = At e B
= Where x = 0y, (x) = Ce's

The term Ae™* represents the incident wave, Beo™* ig the reflected wave, and
Ce*s iz the transmitted wave.

Caleufating the probability of reflection or transmission

You can caleulate the probability that the particle will be reflected or trans-
mitted through the potential step by calculating the reflection and fransmis-
sion coefliciends. If 1, is the reflected current density, J, is the incident current
density, and J, is the transmitted current density, then R, the reflection coel-
ficient is

You now have to calculate J ., 1. and 1, Actually, that's not so hard — start
with 1, Because the incident part of the wave s y (x) = Ae, the incident
current density is

dy, | x|

1= () 20Dy 20

ml|

d ]
Amng this just equals %‘Hl L anmd 1 work in the same way:

1, = Mgl
m
5, =M cf

m

71
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So vou have this for the reflection coefficient:

ad_[B[
3 [af

T, the transmission coeflicient, is

5, _lef
T=_'= 1
J. |h|‘

Finding A, B, and C

S how do vou figure out the constants A, B, and C? You do that as vou figure
ot the coeflicients with the infinite square well potential — with boundary
conditions (see the earlier section “Trapping Particles in Infinite Sguare Well
Potentials™). However, here, vou can't necessarily say that wiix) goes o zero,
because the potential is no longer infinite, Instead, the boundary conditions
are that ywix) and dwix)dye are continuous across the potential step’s bound-
ary, In other words,

B (1) = (00
AV, iy I
You know the following:

= Where a < 0w (x) = Ae®e s Bete
W Where a = 0y, (x) « Ce'

Theretore, plugting these two equations into y (03 = y (0} gives you A+ B = L.
And plugging them into '1';':' [0)= d;’ (0] gives you
BA<kB=RC

Solving for B in terms of A gives vou this resuli:
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Solving for C in terms of A gives vou

You can then caleulate A from the normalization condition of the wave
function:

1= _[|1,!-r[.r}|:u:fx

But you don't actually need A, because it drops out of the ratios for the
rellection and transmission coelficients, R and T. In particular,

r B
[A]
k
el
Al
Theralors,
1
o Lk k,},
[k +k
S L
[.!.:, b, |

That's an interesting result, and it disagrees with classical physics, which
savs that there should be no particle reflection at all. As you can see, if & =
&, then there will indeed be particle reflection.

Mote that as &, goes to &, Rgoes to 0 and T goes to 1, which is what vou'd
Expect.

5o already vou have a result that differs from the classical — the particle can

he reflected at the potential step, That's the wave-like behavior of the par-
ticle coming into play again,

/3
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Assuming the particle doesn’t
have enough energy

Okav, now try the case where E < ¥V, when there's a potential step, as shown
in Figure 3-G. In this case, the particle doesn't have enough energy to make it
into the region x = (), according to classical physics. See what gquanbum phos-
ics has to say abouwt it.

L 3

Fiqure 3-6: B
A patential A
step, E<V,
— b

Tackle the region x < {0 first. There, the Schrddinger equation would look
like this:

d* , )
ﬁ'—[r]+fil'wl|{x}=ﬂ

where &’ = 2"'"5-’;; .

You kiow the salution to this from the previous discussion on potential steps
{see “Limited Patential: Taking a Look at Particles and Potential 3teps™:

w,[rj:Ae"'+HE i x =)



Chapter 3: Getting Stuck in Energy Wells 75

Ohkay, but what about the region x = 07 That's a different story. Here's the
Schridinger eqguation:

':f:'.’:'r.-' ol _ w -
?{x} B (x)=0  (wherex=0)

%
where B = Emr“E %

But hang on; E- ¥, is less than zero, which would make & imaginary, which is
impossible physically. 530 change the sign in the Schrddinger equation from
plus to minus:

%{x}—fa’w_.[x]:ﬂ- x=l

And vse the following for & (note that this is positive ifE = V&

. Zm|V -E|
R=

(Heav, 5o now vou have to solve the differential

% 'xj'l - k‘l,u'l.ll.r] =0  {wherex =07, There are two linearty independent

solutions:
o ) = Cet=
) = Dl

And the general solution to %‘-[IJ— k’L_rr_,fL_x] =0 {wherex=0%is

w,(x) =Ce™ +De ™ x =0

However, wave functions must be finite everywhere, and the second term

is clearly not finite as v does to infinity, so 3 must equal zero (note that if
goes to nedative infinity, the first term also divergdes, but becanse the poten-
tial step is limited to x = (), that isn't a problem). Therefore, here's the solu-
tion for x = Lk

l_.:-f,{x} = Co™t" a0



76 Part |l: Bound and Undetermined: Handling Particles in Bound States

So vour wave functicns for the two regions are

.Il_ll['._ll.-:l = Iﬂllfl.lﬂ-_.v - Hf-u'q: ¥ = ﬂ
Wx) = Lt xxl
Putting this in terms of the incldent, reflected, and transmitted wave func-
tions, y(x), yix), and g {x), you have the fellowing:
o ) = At
o (x) = Bemhr
o) = Dol

Finding transmission and reflection coefficients

Mow vou can figure out the reflection and transmission coelficients, B and
T (as vou do for the case E = ¥V, in the earlier section “Assuming the particle
has plenty of energy™):

J

R="2
1,
J

T— @
J

Actually, this is very easy in this case; take a look at 1

i v | ¥) dy{¥)
=g ) 7

But because y,(x) = Ce =, wix) is completely real, which means that in this
case, the following is true;

dv.(x)  dvix)
{H v.( }

Lrey

And this eguation, of course, is equal to Zero.

5o ), = 0; therefore, T =0, T = (), then B must equal 1, That means that you
have a complete reflection, just as in the classical solution,

The nonzere solution: Finding a particle in x = 0

Despite the complete refllection, there's a difference between the mathemati-
cal and classical solution: There actually is a nonzero chance of finding the
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—
Figure 3-7:
Tz vl of
k by region,
ExV,

particle in the reglon x = 0, To see that, take a look at the probability density
for x = {0, which is

Py = lyfadi®
Plugging in for the wave functlon w(x) gives vou
Pla) = Ly far) = = [C1 5y
You can use the continuity conditions to solve lor Cin berms of Az
by (1) = e (1)
Voo .
o o) 22{0)
Lising the continuity conditions gives vou the following:

) 4#IJ|A|EI 2h

Plxj=lcf e =S

This does [all quickly Lo zere as x gets large, but near x = 0, it has a nonzero
value,

You can see what the probability density looks like for the E <V, caseafa
potential step in Figure 3-7.

N\ _
. / H‘xﬁ

77
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Ohay, wou've taken care of infinite sguare wells and potential steps, Mow
what about the case where the potential step doesn’t extend out to infinity
but §s itself bounded? That brings vou to potestio! barriers, which | discuss in

the next section,

Hitting the Wall: Particles
and Potential Barriers

What if the particle could work its way through a potential step — that is, the
step was of limited extent? Then vou'd have a potential barrier, which is set

up something like this:

V) =0 where v <]
V)=V o wherellsxr=Za

e V) =) where x = a1

You can see what this potential looks like in Figure 3-8,

¥
E ________________________________
‘IIIJ
o
—
Fiure 3-8;
A patential
barrier a X
ExV,.
i
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In solving the S3chradinger equation for a potential barrber, vou have to con-
sider two cases, corresponding to whether the particle has more or less
energy than the potentlal barrler, In other words, i E is the energy of the
incident particle, the two cases to consider are E =V, and E <V, This section
starts with E =W,

Getting through potential
barriers when E > U,

In the case where E = WV, the particle has encugh energy to pass through the
potential barrier and end up in the x = g region. This is what the 3chrddinger
equation looks like;

I

‘:.I'.'I."' (x1||+k|’|,|.r|{x]= 1]

# For the reglon x <

where ' = Em]j:f,;;

fr .
 For the region 0 < x < a: %[rhk:'w:{x]:ﬂ'
" .

Em[E.— ".-’F}Iff

1
where &," = byt

=

# For the region x > a: Eii::l_:' [.r]+.5:|'l_.:-' . [.:.'l- 0

where k* = 2mE,/”
£l

The solutions for y (o), w0, and y(x) are the following:

e Where x < Iy (x] = e o Bebre
w Where 0 = x = a: w (x) = Ul + D
P Where x > a2 w. (x) = E2®® + Fe='

I Fact, because there's no lefbward traveling wave in the x = a regdion,
F=1, soy(x) = B

79
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S0 how do vou determine &, B, C, I, and E? You use the continuity condi-
tions, which work out here to be the following:

w0} =y (0]

iy, _dy,
dr fU}— e I{ﬂ]

We(ﬂ:l:w'[u}l
dy, o d,
2 0= 0

Ckay, from these equations, you get the ollowing:

A B=00 00

b il (A B = i (0 - D)

pe (it [a-ibi = Feitio

W ik, Ceter — ik Do = ik Ee™e

So putting all of these equations together, vou get this for the coeflicient E in
teriig of Az

E = 4k kAc *| 4k, cos(ha)-2i{ k" + &, )sin(ka) |

Waw, 50 what's the transmission coeflicient, T7 Well, T is

L2

A

And this works out to be

T {Hﬁ[% ] :sirl’{k,_uJ‘I

Whew! Note that as & goes to &, T goes to 1, which is what you'd expect.
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S0 how about R, the refllection coefficient? I'll spare you the algebra; here's

what K equals;
E E
{8))
IJ I.l'
siu’[u[ EI::'II" } [‘l.-’,_E—l]

You can see what the E = ¥, probability density, [e(x) 2, looks like for the
potential barrier in Figure 3-9,

felall?

|IIII.-‘(F \I /\I'I, I//_ _h‘-\l.ll Ill'/_\\'lll II/\ .l'lll

I | | | | | |
— I| J || |I \ J_,,.-"II l | |

qure 3.9; | ; \ i - ,.'I
Fﬁ:i:r:qfinﬂrl H'U' " \_/’Ill A

hEﬂ:I:': ) 0 #

That completes the potential barrier when E = V.

Getting through potential barriers,
even when E < U,

What happens if the particle doesn’t have as much energy as the potemtial
of the barrier? In other words, you're now facing the situation vou see in
Figure J-11,
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Figure 3-10;
A, patential
barrier

E {1.".
—

Mow the Schrddinger equation looks like this:

» For the region x < 0y {x) = Ae™ o Behe

i
i For the reglon 0 < x = a: %[xhk‘w,[.r}:ﬁ

smlE—v |/
where & = 2mlE "-’E!f;]

But now E -V, is less than 0, which would make & imaginary. And that's
impossible physically. 30 change the sign in the Schrédinger eguation
from plus Lo minus:

%lr] k:"i,!.r,_,[le_ﬂ

2 E-V,) /

And use this for &k, = s

)

# For the region x = a: {':[f' {x)—k . x]=0

4

where & * = 2mE/
: AR
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All this means that the salutions for v, (x), yr(x), and w.(x) are the following:

= Where x = 0y (x) = Ae®r + Bet
= Where 002 x < a; w (x) = Ce™ o D
o Where x > a: w,(x]) = Ee't o+ Fethe
In fact, there's no lefitward traveling wave in the region x = a; F = 0, 50
w06} I8 i, (x) = Eettr,
This situation is similar to the case where E =V except For the region

U< x<a The wave function oscillates in the regions where it has positive
energy, x = 0 and x = a, but is a decaying exponential in the region 02 x £ a

You can see what the probability density, Tylx) % looks like in Figure 3-11.

bl

I |I II|I I i I\
Figura 3-11: ' ! / J
indlior S \\_/ T '

a patential

barrier

ExV, a i
——

Finding the reflection and transmission coefficients
How about the rellection and fransmission coelficients, B and TT Here's whal

they equal;
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As vou may expect, vou use the continuity conditiens to determine A, B, and E;

by () = v, (10

o o)=Y o)

ey =y ()

o W)= )

A fair bit of algebra and trig is involved in solving for K and T; here's what B
and T turn out to be:

kiek ) bk
H=[T]smh‘[hzﬂ] dcosh’(ka)+ { k-; stnh | ke, a}‘

) 1
o R T
T =4 4deosh [keﬂ}-l- 'k—kIsmh lk_.r.r]

172

Despite the equation’s complexity, it's amazing that the expression for T can
ke nonzero. Classically. particles can’t enter the forbidden zone s x < a
hecause E < ¥V, where V, is the potential in that region; they just don't have
enough enerdy to make it into that area.

Tunneling through

Cuantum mechanically, the phenomenon where particles can get through
regions that thev're classically forbidden to enter is called hmneling,
Tunneling is possible because in quantum mechanics, particles show wave
properties,

Tunneling is one of the most exciting results of quantum physics — it means
that particles can actually gel through classically forbidden regions because of
the spread in their wave lunctions. This is, of course, a microscopic effect —
don't try Lo walk through any cloged doors — bt iU's a significant one. Among
other effects, tunneling makes transistors and integrated circuils possible,

You can calculate the transmission coefficient, which tells you the prob-
ahility that a particle dets through, given a certain incident intensity, when
tunneling is invalved. Daing 5o is relatively easy in the preceding section
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because the barrier that the particle has to get through is a square barrier.
But in general, calculating the transmission coefficlent isn't s0 easy, Kead on,

Getting the transmission with the WKB approximation

The way vou generally caleulate the transmission coefficient is to break up

the potential vou're working with into a succession of square barriers and to
sum them. That's called the WentzelKrmmers-Brillogin (WEE)} approximation —
treating a general potential, Viix), as a sum of square potential barrlers.

The result of the WKR approximation is that the transmission coefficient for
an arbitrary potential, Vi{x), for a particle of mass m and energy E is given by
this expression (that 5, as long a5 Vi{x) is a smooth, slowly varving function):

T- l:xp[ (Ef;]]'{zm[u{xj )} c[rl

So now vou can amaze vour friends by calculating the probability that a par-
ticle will tunnel through an arbitrary potential. 1Us the stulf science fiction is
made of — well, on the microscopic scale, anvway.

Particles Unbound: Solving the
Schridinger Equation for Free Particles

What about particles outside any square well — that is, free particles? There
are plenty of particles that act freely in the universe, and quantum phyvsics
has something to say about them.

Here's the Schradinger equation:

o w{x)s Vix)y{x) ()

What if the particle were a free particle, with Vix% = 07 In that case, you'd
have the following equation;

=k CEwlxl=
2 -r.Lu""'wl'rI1II Eq:-r{:-:j .
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And you can rewrite this as

d.-
I'.'erz

i,'.r[.r]+k‘w{x]=l:|'

2mE

where the wave number, &, is & = W
|

You can write the general solution to this Schrddinger equation as
'||.||:.l':| - MIE‘I.‘ L BE—HIL'

Il vou add time-dependence 1o the equation, vou ger this time-dependent
wave function;

W{-"~ :] =Aﬂxp(ekr—1gk—n;t]+ B ﬁxp(—( ‘-hr-ﬂz'%[ ]]

That's a solution to the Schrddinger equation, but it turns out to be unphysi-
cal. To see this, note that for either term In the equation, yvou can’t normalize
the probability density, [y{x) 1= (see the earlier section titled "Normalizing
the wave function”™ for more on normalizing’;

Igix) 5= [AFor [BI®

What's going on here? The probability density for the position of the particle
is uniform throughout all &' [n other words, you can't pin down the particle
at all.

This is a result of the form of the time-dependent wave function, which uses

an exact value for the wave number, & — and g = &k and E = 557/ 2m. 50 what

that equation says s that vou know E and p exactly, And if vou know p and E
exactly, that causes & large uncertainty in x and # — in fact, x and §are com-

pletely nncertain, That doesn't correspond to physical reality,

For that matter, the wave function (), as it stands, isn't something you
can normalize. Trying to normalize the first term, for example, gives yoo this
integral:

Iw('x]l,n"{r}-:tx

Amd for the first term of yiix, f}, this is

Iw(.r]w'{r}nﬁ:l.ﬂnr-jdr — e
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4F

And the same is true of the second term in ywx, .

S0 what do vou do here to get a phyvsical particle? The next section explains.

Getting a physical particle
with a wave packet

If vou have a number of solutions 1o the Schridinger equation, any linear
combination of those solutions is also a solution. 5o that's the key to getting
a physical particle: You add variows wave lunctions together 5o that you @et a
wave pocked, which is a collection of wave functions of the form e™ 5% such
that the wave functions interfere constructively at one location and interfere
destructively (2o to zero) at all other locations:

L Ll A

vlx. 1)~ To.e

This s usually written as a continuous integral:

Wi, !]={3ﬂl'1,l -J ok et A

What is ¢k, )7 It's the amplitude of each component wave function, and you
can find ${&, ) from the Fourier transform of the equation;

.||.-.-nl|

i

p{k..r}: I lJ:qrf_r,.r]E

(2x)"

Because & = p/'fh, you can also write the wave packet equations like this, in
terms of p, not &

= 1“. n!'|

'P’{x,r]: 1 wap.r]e iy

{Err)" -

e o |

¢I{k, I}: i i l,il'l{.:l:'. te 1= g

2x)
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Waell, you may be asking vourself just what's going on here, It looks like

yi(x, £ 15 defined in terms of 0o, 1), bul ¢, £ is defined in terms of yix .
That looks pretty circular,

The answer is that the two previous equations aren’t definitions of wix, £
or g, f); they're just equations relating the two, You're free to choose your
own wave packet shape yoursell — for example, vou may specify the shape

of 4, 1), and 1-”[1'- f}|= : . . J"i'[k. F]E'b gk would let v find yilx, 1.
{2.1:] !~

Going through a Gaussian example

Here's an example in which you get conerete, selecting an actual wave packet
shape. Choose a so-called Gaussian wave packet, which you can see¢ in
Figure 312 — lecalized in one place, zero in the others.

b Jplx, tIf
e
|
Figure 3-12;
A Gaussian - e
e
WEvE __ﬂ__a-“'” H-—_h__
packat. - m— — -
EEEE—— X

The amphitude k) vou may choose for this wave packet is

w{.&]:ﬂcxp

A

You start by normalizing ¢{&) to determine what A is. Here's how that works:

1= [lo(e)]"ae

Substituting in ¢k} gives vou this equation:

I A|‘Im[‘”T:[.!¢-k,}‘].::k
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Doing the integral (that means looking it up in math tables) gives vou the
following:

. I-
S EA
¥ S
? I1
TJ'I{'reiﬂrl_*-A:[“ . J .

.-'IE.H.'

S0 here's vour wave function:

vix)= [EI'] AN Explﬂr (k- ﬁmﬁ

This little gem of an integral can be evaluated to give vou the following:

R A e A

So that's the wave function for this Gaussian wave packet (Note: The
exp[-x*/a*] is the Gaussian part that gives the wave packet the distinctive
shape that vou see in Figure 3-12} — and it's already normalized.

Now yvou can use this wave packet function to determine the probability that
the particle will be in, say, the region 0= x =/ The probability is

. d
J ()] ae
In this case, the integral is

2] fern{27 s

And this works out to he

|_:_"1 g B}
[E .rm’] er{ ”f’a=.‘i"=.!’ﬁ

5o the probability that the particle will be in the region 0 = x < /2§51, Cool!
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Chapter 4

Back and Forth with
Harmonic Oscillators

In This Chapter
Hamiltonians: Looking at total energy
Zolving for energy states with creation and annihilation operators
Understanding the matrix version of harmonic oscillator operators
Writing computer code to solve the Schrédinger eguation

Hunrm.ru-:' oscillators are physics setups with periodic motion, such as
things bouncing on springs or tick-tocking on pendulums. ¥ ou're profb-
ably already familiar with harmonic oscillator problems in the macroscople

arena, but now you're going microscopic, There are many, many physical
cases that can be approximated by harmonic oscillators, such as atoms ina
crystal structure.

In this chapter, you see both exact solutions to harmonic oscillator prablems
as well as computational methods for solving them. Knowing how to solve
the Schridinger equation using computers is a useful skill for any gquantum
phvsics expert.

Grappling with the Harmonic
Oscillator Hamiltonians

Ohcay, time to start talking Hamiltonians (and 'm not referring to fans of the
1.5 Founding Father Alexander Hamilton). The Hamiltonian will let vou find
the enerey levels of a system.
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Going classical with harmonic oscillation

In classical termas, the force on an object in harmonic oscillation s the follow-
ing {this Is Hooke's law):

F=-kx

In this equation, & is the spring constant, measured in Mewtons/meter, and x
is displacement. The key point here is that the restoring force on whatever is
in harmonic motion is proportional to its displacement. In other words, the
larther you streteh a spring, the barder it poll back.

Because F = ma, where m b5 the mass of the particle in harmonic motion and
o is its instantanecws acceleration, you can substitute for F and write this
equation as

mia + kx = 1)

Here's the equation for instantaneous acceleration, where xis displacement
and ¢ is time:

So substituting for g, you can rewrlte the force equation as

i+ k= ”:;;'T.p.ﬁ-_x=[|-
Dividing by the mass of the particle gives vou the following:

d'x | kx
art | m

3=

If your take /- = w0 (where « is the angular frequency), this becomes

d'x

¥ i =0
e ar

You can solve this equation for x, where A and B are constants:

xo= Aginad « B cosmf
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Therefore, the solution is an cscillating one because It involves sines and
cosines, which represent periodic waveforms,

Understanding total energy
in quantum oscillation

Mow look at harmoenic oscillators in guantum physics terms. The Hanilfonion
(His the sum of kinetic and potential energies — the total eneregy of the
syslem:

H = KE + FE
For a harmonic oscillator, here’s what these energies are equal bo;

e The kinetic enersy at any one moment is the follpwing, where pis the
particle’s momentum and oy is its mass:

P
KE it

# The particle’s potential energy is equal to the following, where & is the
spring constant and x is displacement;

PE = ;k:. = ;mw‘x"

{Note: The k cancels out because a” = */.)

Therefore, in gquantum physics terms, vou can write the Hamiltonian as H =
EE + PE, or

H=£2 41
e
2m 2

P
whers P and X are the momentum and position operators,
You can apply the Hamiltonian operator Lo various eigenstales (see Chapler

2 for more on elgenstates), [y, of the harmonic oscillator to get the total
energy, E, of those eigenstates;

Hiy = %hu- = -I--é-.r.rem"?'["ll_n' 2 E| g =
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The problem now becomes one of linding the eigenstates and eigenvalues.
However, this doesn’t turn out to be an easy task. Unlike the potentials
Wi{x) covered in Chapter 3, Vi(x) for a harmonic oscillator is more complex,
depending as it does on x”,

5o you have to be clever. The way vou sobve harmonic oscillator problems in
fuantum physics is with operator algebra — that is, you introdoce a new set
of operators. And they're coming up now.,

Creation and Annihilation: Introducing
the Harmonic Oscillator Operators

)

Creation and annihilation may sound like big make-or-break the universe kinds
of iddeas, but they play a starring role in the quantum world when you're work-
ing with harmonic oscillators. You use the creation and annihilation operators
to solve harmonic cscillator problems because doing so i a clever way of
handling the tougher Hamiltonian equation {see the preceding section). Here's
what these two new operators do;

# Creation operator: The creation operator ralses the energy level of an
elgenstate by one level, so if the harmonic oscillator is in the fourth
energy level, the creation cperator raises it to the fifth level.

' Annihilation operator: The annihilation operator does the reverse, law-

ering cigenstates one level.

These operators make it easier to solve for the energy spectrom withowt

a lot of work solving for the actual eigenstates. In other words, vou can
understand the whole energy spectrum by looking at the energy difference
between elgenstates,

Mind your p's and q's: Getting the
energy state equations

Here's how people usually solve for the energy spectrom. First, vou intro-
duce two new operators, p and g, which are dimensionless; they relate to the
P (momentum) operator this way:

o= P/
A mbw)

e a=x(me)



Chapter 4: Back and Forth with Harmonic Oscillators 95

You vse these two new operators, pand g, as the basis of the annihilation
operator, a. and the creation operator, a';

o 4:|'=—].-[e;.| +in)
'\lIIE [,

| .
o =g -ip)
i

Mow vou can write the harmonic oscillator Hamiltonian like this, in terms of o
and o'

_ i i

H=hol a'a+5

Ag for creating new operators here, the guantum phvsicists went crazy, even

giving a name to a'a: the N or number operator. So here's how you can write
the Hamilbonian:

= 1
H—nm(N+2]

The M aperator returng the mumber of the energy level of the harmonic ascil-
Lator. If vou denote the eigenstates of N as |n=, vou get this, where i is the
number of the ath state:

MNlr==nln=

Because H = fisdN + /2), and because Hlm=> » E; 1=, then by comparing the
previous two equations, vou have

E = (rr+%].l‘mr =012,

Amazingly, that gives vou the energy eigenvalues of the nth state of a quan-
tum mechanical harmonic oscillator, 50 here are the energy stales:

# The ground state energy corresponds ton =

E.=

a

Ten

ol |—
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= The first excited state is

Fri

b [

i The second excited state has an energy of

5
E.,==li
2= e

And s0 on, That is, the energy levels are discrete and nondegenenle (not
shared by any two states). Thus, the energy spectrum is made up of equidis-
tant bands.

Finding the Eigenstates

When yvou have the eigenstates (see Chapter 2 to find out all about eigen-
statesh, vou can determine the allowahle states of a system and the relative
probability that the system will be in any of those states.

The commutator of operators A B is |A B] = ABE - BA, 50 note that the com-
mutatar of @ and o' is the following:

la.a']=3[a+ip.g-ip]
Thiz is equal to the following:

EXAE %[q +ip. g-ip |=-i[q. p]
This equation breaks down to [, r:.|1] = 1. And putting todether this equation

with H=.I‘rm( N+El), you get [a, H)= e and [a’, H]=—taa’.



Chapter 4: Back and Forth with Harmonic Oscillators

Finding the energy of aln>

Chkay, with the commutator relations, you're ready 1o go. The [irst question is
il the energy of state |n=is E,, what is the energy of the state alr=T Youw can
write the energy of o ln= this wav,

Hialn=}
= {aH — ko h | =~
={E, —fiw}aln=)
S0 ala=is also an eigenstate of the harmonic oscillator, with energy E, = fica,

not E,. That's why @ is called the annihilation or lowering operator: [b lowers
the energy level of a harmonic oscillator eigenstate by one level,

Finding the energy of a'ln>

5o what's the energy level of a' 1n=? You can write that can like this:

Hla'|n=)
=[U'H-I-?Jma':|n;-

=[En+mu]l|:ﬂ'|rr::]

All this means that a’ | o= is an eigenstate of the harmonic escillator, with
energy E, + fins, not just E, — that is, the a' cperator raises the energy level of
an elgenstate of the harmonic oscillator by one level,

Using a and a' directly

IT you've been following along from the preceding section, you know that
Hialn=) = (E, —ho)(al m=1 and H{a' | n=) = (E, + fi)(a’ |n=). You can derive the
Following from e these equations:

P oalns=Clp=1>

w a'ln==Dla+ 1=
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C and D are positive constants, but what do they equal? The states [r= 1=
and [a + 1= have to be normalized, which means that < -1l - 1= =
<t e Ll 1= = 1, 5o take a look at the quantity using the C operator;

{nlaaln=1=Cn=-1ln=-1=
Amgd becanse |n— 1= is npormalized, =n—-1ln-1>=1:

Certla et = = OF
el a'erl i = C°F

But you also know that ¢'a = K, the energy level operator, o you get the fol-
lowing equeation:

| Ml = £

MNln= = nln=, where nis the enerdgy level, 50
nenlns = C°

However, =il m= = 1, 80
n=
n=C

This finally tells you, from alr=- = e - 1=, that
aln==n"ln-1=

That's cool — now vou know how to use the lowering operator, o, on sigen-
states of the harmonic oscillator.

What about the raising operator, a'? Following the same course of reasoning
vou ake with the a operator, you can show the following:

alm=fas 17" lnsls

So at this point, vou know what the energy eigenvalues are and how the rais-
ing and lowering operators affect the harmonic oscillator eigenstates, You've
maile quite a lot of prodress, using the g and al operators instead of trying to
solve the Schrodinger equation.
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Finding the harmonic oscillator
energy eigenstates

The charm of using the operators @ and a' is that given the ground state, (=,
those operators let vou find all successive enerdy states. I you want to find
an excibed state of a harmonic oscillator, vou can start with the ground state,
|(F=, and apply the raising operator, o', For example, you can do this:

e |I:-==:.r'||:|,=-=|]:-
e 2}=L{r‘ ]}=.—l a’ "I]h
| '\".2 | _ﬂ.z![ :Il

N T | Y
F|H:_Hn|£}_ﬁ{a'j|ﬂ:=-

:-"'l#} =;}Iﬂ'|3}=:leﬁ|:u']'|ﬂ:~

And o on. In general, you have this relation:
na>=—{a'} o>
Jnt

(Working in position space
Okav. |p == ,—ll-{n' }' |0 is line as far as it goes — but just what is 10=? Can't
&

vou get a 5patiél eigenstate of this eigenvector? Something like y,(x], not
just 10=% ¥Yes, vau can, In other words, vou want to fimd <3| 0= = y,(x), S50 von
need the representations of a and a'in position space.

The p operator is deflined as

P

i [mi‘]m} :
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Because I'= —J'JI% , you can write

i d
{mﬂm]l“ﬁ

Amdl writing x, = [ﬂf{mﬂm}.""'l, this hecomes

- d =—fx o

P=—~ [
(o) & o

Ohkav, what aboul the g operator? You know that
g =L [ g +ip )
_\IIE ¥

A that

oy me xS
"‘R( 3 J -,
Therafore,

(X, d
= glh )

You can also write this equation as

Xt+xS d }

“ ILE[ il

Okav, so that's a in the position representation. What's a'? That turns out o
he this:

a’ =K1J2-[."L—x,,’&j
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Mow's the time to be clever, You want to solve for 0= in the position space,
ot <x [{l=, Here's the clever part — when yvou use the lowering operator, a,
onl{l=, vou have to get i) because there's no lower state than the ground
state, soalll= =0k, And applving the <x| bra gives yvou <xlal(= =1,

That's clever because it's going to give vou a homogeneous differential equa-
tion (that is, cne that equals zero). First, vou substitute lor a:

i rlulﬂ iz ]

1
x,42

Then you nse -::xli] = w.,l:.r}:

Splvl) Xt )=0

(==10

<X :H—..E,"E

] -dwl{x] -
III“E[JIF“I:.I}+:,. ol ]--ﬂ

Multiplving both sides by .'l:',w.E gives vou the following

sy o) =, 2L

ﬂfi,u,,[.t] _ —t‘l,nr[_lj
dx x?

The soluticn to this compact differential equation is

v, x]= .&e'.-:p["'::;"h":]

That's a gaussian function, so the ground state of a quantum mechanical har-
monic oscillator is a gaussian curve, as vou see in Figure 4-1.
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¥y ix!
Figure 4-1; o

The grewnd - T
state ofa Hm_ﬂ_
quantum T
—

mechanical -
harmanic  ——

ostillator.
X
—

Finding the wave funetion of the ground state

As a gaussian curve, the ground slate of a quantum oscillator is y(x) = A
exp{=x/2x," ). How can you figure out A? Wave [unctions must be normalized,

&0 the following has to be true;
1= [y, x) et

Substituting for w{x) gives you this next equation;

F4

m.

_ -x*/
(4,

1= A e
B J-'-:ﬂfl'-{ i J:f ] '
You can evaluate this integral to be
1= A‘”jexp[ E J:b: A'm “.r

Therafore,
=A% '3::',,

A= .]I

e
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This means that the wave function for the ground state of & quantum
mechanical harmonic oscillator is

S— —xt
wa(x] #.‘x.,exp[ ;31_".-}

1]
Coal. Mow vou've got an exact wave function,

A little excitement: Finding the first excited state

(heay, the preceding section shows vou what yw,(xc) looks ke, What about the
first excited state, y,(x}? Well, as vou know, w,(x] = <x| 1= and | 1= =a' 0>, 50

ur (v} = <xla’ 1=

Amndd vou know that alis the Feellwimgt;
co 1 ( ¥y d ]
a . B x, Ay
Therefore, w,(x) = <x!a'| > becomes

' 1 [ ”;] :
sx@|les—max|{ X—x"—|:=
| | X,y o

- o
_rﬂE(.‘-{ A,dl_]{xlﬂ::

And because gzl = =x 0= you gel the following equation:

ylx)= ﬁ?{—x,*im{ﬂ

L

s

Il
ks
[

[

=2 2y ]
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You also know the following:

wolx)=—1 E”p[_xi’éa‘.‘]

T, #

Therefore, w (x| = '_'_;_—'E_.rw,{r] becomes

| x}= 2 xexp| —X 4
¥ 'I_ .'II*.T““' P ..""' 2.\.'“:

What's g2} look like? You can see a graph of y(x) in Figure 4-2, where it has
one node (transition through the x axis).

RE

| i
Figure 4-2:
Tha first —
grcitad ————_ | "
state of a
quanum
mec hanical
b manic .
ascillator,
—

Finding the second excited state
Al right, how about finding w v and 50 on? You can find y.(x) from this
equation;

. x)=—<xa' 0>
'u'E! :
i R
=——x|a"]
&1 <Xl
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Substituting for o', the equaticn becomes

vil3)= gkt L ) )

Using hermite polynomials to find any excited state
You can generalize the differential equation for yw, () lke this:

I i 1 [ 2 il } [—_n;'2 Fa J
w o |x|= X—-x,"— | 8xp 2
[ J :trl"[E'.re!]l; ""'-:..I' dx /2%,
To solve this general differential equation, yvou make use of the fact that

3 R W L RO

K

H, (x} is the nth hermite polvnoniial, which is defined this way:

H, (x)=(-1)"exp(x* |4 —exp(-x")

il

Hoby mackerel! What do the hermite polynomials look like? Here's Ho(x),
H,(x), and s0 on:

# Hylx) =1

) = 2

b Ho(x) = A" - 2

W Hylx) = By = 12x

W H(e) = Thx" = 48 + 12

o Hal(x) = 32¢° — 160y’ + 120x

What does this buy vou? You can express the wave functions for quantum
mechanical harmonic oscillators like this, using the hermite polynomials H.(x):

R VS S S

H
where X, ={ ﬁffmm] ] '
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And that’s what the wave functicn looks like for a quantum mechanical har-
monic escillator, Who knew it would've invelved hermite polymomials?

You can see what yw.(x} looks like in Figure 4-3; note that there are two nodes
here — In general, v, (x) for the harmonic oscillator will have n nodes,

{xl
wl

]
Figure 4-3; |
The second | ,
gxcitad
state ol a I\ }III
guanium
meehanical \\_/'JI

harmanis
agcillator,

Putting in some numbers
The preceding section gives yvou g 0x), and yvou've already solved for B, 50
yvou're on top of harmonic oscillators, Take a look at an example.

Say that vou have a proton undergoing harmonic csclllation with o = 4,38 =

¥ see”™, as shown In Figure 444,

—
Figure 4-4;
i protan
undergaing ﬁ
harmonic II\,__/J
oscillatian,
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What are the energies of the various energy levels of the proton? You know
that in general,

So here are the energies of the proton, in megaelectron volts (Mel'):

W E = ",T‘l' = 1.50 MeV

E

 F, =%= 4.50 MeV

3,

W E_ =%=?-ED MeV

B, = 00 _ 1050 MeV

=1

And so on.,

Mow what about the wave functions? The general form of w,(x) is

x =+H_[-‘f"r }r_' [‘-"ff': ..\]
w ) ] EI*{E‘n!xo}I: -"'f'rl' :q} .-"lr.i:ﬁ

where.\*..=[ h ] B Sox, =3.71=10%m,
A ma

Convert all length measurements inte femtometers (1 fm = 1= 107" m). giving
voul x = 3,71 fm, Here's yi,(x), where x 5 measurad in femtometers:

_ —x'
Ly s8]

Here are a couple more wave functions:

AR milﬁﬂ;_ﬂ}ﬂpi_x};m]

o Walx )= ﬁ_q;u["(ﬂ_n]‘: ‘E]“'J[_I;”ér?&]
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Looking at Harmoenic Oscillator
Operators as Matrices

Because the harmonic oscillator has regularly spaced energy levels, people
often view it in terms of matrices, which can make things simpler. For exam-
ple, the following mayv be the ground state eigenvector (note that it's an infi-
nile vector):

j0>=

l
0

= = = 3

And this may be the first excited state;
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And 20 on, The M operator, which just returns the energy level, would then
look like this:

== = =]
[EE R = ]

0
1
{
]
i1

M=
f
i
2
0
il

0 0o

S0 M1 2= gives you

N|2 ==
0000 o
0 100 0
0020 .
0003 0
0o O b
0000 0
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This ks equal to

N2 ==

of oo oo o
L] 1 O ¥ N | [
2000 0 2 0 .0
of oo oo o3 o
= 0 0o o .0
of oo oo L0
0

i}

0

In other words, M2 = 2 2=,

How about the g {(lowering) operator? That looks like this:

LT
1]

= &
:n:-:-r:ﬁ-l :
::.:.'E\HT]:E

1]
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In this representation, what s al 1=7 In general, al =« 1" la = 1=, soal 1=
should equal 0=, Take a look:

all ==
010 0 o
0020
§ T VI S S L
o060 o0 0
o o0 o0 o P
g o0 o0 o0 .0

This matrixz multiplication equals the following:

4:r|l.*:==
Al e soooo o
ol [0 o 2 o .1
ol o o o 5 .0
L O O R | S ¢ A L1
Ol=p o 0o o [0
Ol o o o o _ |0
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In other words, ¢l 1= = 0=, just as expected.

5o how about the a (ralsing) aperator? Here's how it works in general: a'la=

= (i o ]} "1« 1=, In matrix terms, @' looks lke this;
a’ =
0 0 0
Vo0
0 N2 00
000
o 00 A
o0 o0

For example, you expect thata'l 1= = W2 | 1=, Does it? The matrix multiplica-

Liam is
n!'ll?:--
o0 o0 0
J oo oo oo
0 W2 oo o
o0 3 o0 o
o 00 4 |
g 0 0 0 0
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This equals the following:

u'll:-=
gl o o o o 0
VI R I 1 1
I VR 0
0 {0 o0 3 0 0
ti=lo o o & .0
L | T O | f

Soa'l1== 2 125 as it should,

How about taking a look at the Hamiltonian, which refurns the enerigv of an
eigenstate, Hln= = E, 'n=7 In matriz form, the Hamiltonian looks like this:

H=

1000
03200
005 0
0o 07

fiew

0 000

o 0 o 0

Bo if vou prefer the matrix wav of looking at things, that's how it works for
the harmonic ascillator,
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A Jolt of Java: Using Code to Solve the
Schridinger Equation Numerically

.|
Figure 4-5:
Dividing
iz along
the x ams,
—

Here's the one-dimensional Schradinger equatian:

—nt d'w(x)
2m dv’

+ V(o Jur{ x )= By x)

And for harmonie oscillators, you can write the eguation like this, where

B !m[l-'. -vix)/ }

A

In general, as the potential V{x) gets more and more complex, using a com-
puter to solve the Schrddinger equation beging to lock more and more
attractive, In this section, | show vou how to do just that for the harmonic
pscillator Schrédinger equation.

Making your approximations

In computer terms, vou can approximate wiy) as a collection of points, gy, y.,
i, Y, W, and sa on, as you see in Figure 4-3,

ylx)
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Each point along ywix) — wy, wis, gy, wi. s, and 50 on — is separated from its
neighbor by a distance, iy, along the x axis. And because dy/fdy is the slope of
yix]), you can make the approximation that

dy -,
TS h

In other words, the slope, de/dx, is approximately equal to Ay/Ax, which is
coual tooy, =, (=AY divided by fr; (= Ax)

You can rearrange the eguation to this:
W=y dy iy,

That's a crude approximation for w, |, given yi. So, for example, if vou know
i you can find the approximate value of yy, if vouo know giy/dy in the region
of y..

You can, of course, find better approximations for g, | . I particular, physi-
cists aften use the Numeroo algorithirm when solving the Schrodinger equa-
tion, and that algorithm gives vouw wy, | in berms of yw, and w, . Here's what
the Mumerov algorithm savs:

z . L+ bk (x)
2[I_(5n1 k(%) |2] y o [ ]

]2 h:'rr 1
¥Wo.= 3
: lrh,'ﬁ:,_,,I:A'}
12
. Errr[F'r T marx 7 ] e
In this equation, kﬂ"'[_tj = ff':?’

and the boundary conditions are gwi—=] = wi=) = {1, Wow, Imagine having to
calculate this by hand, Why not legve it up to the computer?

For a proton undergoing harmonic oscillation with o = 4,58 = 10 sec™", the
exact ground state energy is

E, = "T‘-"’ — 1.50 MaV
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Y¥ou solve this prablem computationally earlier in this chapter, The following
sections have you try to ger this same result using the Numerov algorithm
and a computer,

Building the actual code

Ta calculate the ground state energdy of the harmanic ascillator using the
Numerov algorithm, this section uses the Java programming language, which
wou can Fet for free [rom java. sun . com.

Here's how vou use the program: You choose a trial value of the energy for
the ground state, E;, and then calculate s¢(xd at =, which should be zero —
and if it"s mot, yvou can adjust your guess for E;, and try again. You keep going
until yel==d = {1 {or if not actually ) a very small number in computer termsj —
and when it does, you know vou've guessed the correct energdy.

Approvimating vy (=)

How do vou caleulate wi==)7 After all, infinity is a pretty big number, and the
computer is going o have trouble with that, In practical terms, vou have to use
anumber that approximates infinity. In this case, vou can use the classical turn-
ing points of the proton — the points where all the proton’s energy is potential
enerdy and it has stopped moving in preparation for reversing its direction,

At the turning points, x, E, =
EeTEY ), S0

.ﬂ
¥ = EF'“II .
J;"[.r.rur.l']

And this is on the order of 45 femtometers (fm), 50 vou assume that ywix)
should surely be zero at, say, £15 fm. Here's the interval over which you cal-
culate yix)k

I..1
”rﬂi . fthat is, all the energy is in potential

o = =13 fm
o= 13 Im

Divide this 30 fm Interval into 200 segments, making the width of each seg-
ment, iy, equal 1o (X, = X, 0200 = = 0015 Tm,

Oheay, wou're making progress. You'll start by assuming that wix,, ) =1, fuess
avalue of E;, and then calculate ¢ix, .0 = gy (because there are 200 sege-
ks, at x = x ., v, = Wen ) Which should equal zero when vou get E,.
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Here's what the results tell you;

e Correct: If abs{y...) is zero, or in prai:tlt_:aal terms, less than, say, your
maximum allowed value of y_,. = 1 = 7, then you're done — the E; vou
guessed was correct.

= Too high: I abs{y.) is larger than vour maximum allowed y, oy .
{= 1= 1077, and gy, is pasitive, the energy you chose tor B, was toa
high. You have to subtract a small amount of energy, AE — say 1 = 107
MeV — [rom vour guess [or the energy; then caleulate absivs ) again
and see whether it's still higher than vour maximum allowed y, g, .. 1
50, yvou have to repeat the process again.

# Too low: If abs(w ) is larger than vour maximom allowed y, i, (=1 =
107, and yi,, is negative, the energy you chose for E, was too low. You
have to add a small amount of energy, AE, ta vour guess for the energy;
then caloulate ahayy,. ) again and ses whather 1t°s still higher than your
maximum allowed y, yi__ . If sa, you have to repeat the process.

So how do vou caleulate vy, ? Given two starting values, w, and w,, use the
Numerov algorithm:

2[| _[ﬁn,'-'ﬂ,[x]’

12 (Ve

1+ bk (x)
|2]]'?"'-' [ 2
L bk [x)

12

Reep calculating successive points along ywix: e, yy, 3., and o0 on. The last
I_.'I'Eli.l'lt % Worg.

Okav, vou're on our way, You're going to start the code with the assumption
that w;, = O and y, ks a very small number (vou can cheose any small number
youl like), Because yvou know that the exact ground level energy is actually
1.5 Me¥, start the code with the guess that E, = 14900000 MeV and let the
computer calculate the actual value using increments of AE = T = 1 bel,

Mote also this equation depends on kﬂ{'.rjz, i, ||:_.T_:I:. and &, | ||{.:r]n!- Here's how
wou can find these values, where E ., 15 the current guess for the ground
state energy (substitute w7 - 1, and i+ 1 for )

— xS ),
/2 ]“

e
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And you know that K = 4.58 = 107 sec”™, 50

-
p.-”"r—{."ﬂmxm “fm
7

o 201,05 MeV fm

K

Therefore, kl':{rl'j =005E o — 363 = lt]“?::;", where x; for a particular seg-
ment §is x; = iy« X,

W'riting the code

(Heav, now I'm going to put together all the info from the preceding sec-
tion into some Java code, You start with a Java class, se (for Schridinger
Eqguation}, in a file you name se oo

public olasa B

}

Then you set up the variables and constants yvou'll need, including an array
for the values yvou caleulate for w (because to find y_ |, vou'll have had to
store the already-calewlated values of g, and w, )k

public class se

{

double
double
double
double
double
doulble
double
double

peif]:
ECurrent;

Emin = 1.4%0;

¥Min = =158.;

¥Max = 15.;

hfaro:

El=ltg = 0.0000001;
maxPai = 4.00000001;

int pumberDivigions = 200;

¥

The se class’s constructor gels run lirsl, so you initialize values there, inclad-
ing gy (= gl 0 = 00 and v Gany small number vou want) to get the calcula-
tion gaing. In the main method, called affer e consfructor, you create an
ohject of the sé class and call it calcofafe metfiod to get things started:
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public class s&

{

double paill;

double ECurrent;

double Emin 1.4%0;
double xMin = -15.;

double xMax = 15.:

double hisro;

double EDelta = §.00000081
double maxPsi = 0.00000801 ;
int mumberDivisions = 200;

public =i}
{
ECurrent = Emin;
pel = new double[numberbDivisions + 1]:

psi[0] = 0;

psi[l] = -0.000000001:

psl [numberDivisions] = 1.0;

hZere = (xMax - xMin) / nupberDdvisions:

public static void main{String [] argwv)
f

g s = el sal )
de.malaulare] )

¥

The real work takes place in the calemiote method, where youw use the carrent
vuess for the energy and caleulate yag,:

e I abs{yr) is less than vour maximum allowed valoe of g, g, vou've
found the answer — your current guess for the energy is right on.

0T abs{yi,) is greater than g, and g, 13 positive, you have to subtract
AE from yvour current guess for the energy and try again.

I abs{yr,) 8 greater than g and e, s negative, vou have te add AE
to vour current guess for the energy and then try again,
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Here's what all this looks like in code:

public void calculatel)
{
while(Math. abs(psinumberDivisions] > maxPsi}{
for (int i = 1; i <numberDivisiong; i+4+4){
psi[i + 1] = calculateNextPsi(il];
1
if (psi[numberbDivisicns]> 0.0) {
ECurrenlt = ECurrenlt A EDelta:
i
glse |
ECurrent = ECurrent + EDelta;
)
System.out.println(iPsiZ200: i + psi[numberDivisions
+ 1 E:r 1 + round{ECurrent)];
1
Syvatem.cut.printin{ilwnThe ground state energy is 1 +
round (ECurrant) + 1 MaW.1):

Mote that the next walue of y{that is, v, _¥is calculated with a method
named calctateNexiFsi Here's where you use the Mumeroyv algorithm —
diven y,, u, _, you can calcwlake yi, |

publie double caloulateNextPai{int nj

{
dgouble ESgMimusine = calculate¥Sguared{n - 1}:
gouble ESgl = calculateESguared(n) @
aouible ESgNPlusine = caloculateKSguared({n + 1):

double nextP=l = 2.0 *{1.0 - (5.0 ¥ hZero * hZero *
FESqgN / 12.0}) * palinl;
nextPasi = nextPai = (1.0 + (hEsro # hZero *

ESgiMimnuasone 7 12.0)1) * psilfm - 1]:

nexXtfsi = nextPsi (1.0 + {(hZero * hiero * ESgHPlusOne
{ 12.0)0):

return nextPsi;

Finally, note that to caleulate y, o, vou need &, &, ;. and &, |, which vou
find with a method named calcedateKSguared, which vses the numeric values
you've already figured out for this problem:

pubklic double calculatelSquared{int nj
{
deuble 2 = (hfera * n) + xMin:
return (({0.05)] #* BCurremkt) - [[x # x) * 5.63e=-3));



Chapter 4: Back and Forth with Harmonic Oscillators 1 2 1

Whew, Here's the whole program, se jova;

piiblic class se
{

double paill;
double ECurrent;

double Emin = 1.4%0;
doubkle ¥Min = -15.:
double xMax = 15,

double hEaror

double EDalta = §.00000381;
double maxPsi = O0.000000801 ;
int mumberDivisions = 200;

public seail}
{
ECurrent = Emin;
pel = new double[numberbDivisions + 1]:
psi[0] = 0;
peifl] = -0.000000001;
pal [mumberDivisions] = 1.0;
hZera = (xMax - =Min) f numberDivisions:

public statlic void main{String [] argwv)
{

ge de = new asf};

de.oalaulave|)r

public void caloculatel)
{
whilae(Math. abs (pal [numberDivisions] j > maxPel] |
for (int 1 = 1; i chnumberDivisiona; 1++4){
pEif[1 + 1] = calculateMextPsiii);
1
1£ (psi[numberDivisions]s> 0.01 {
ECurrent = ECurrent - EDelta;
i
alaa |
Ecurrent = BECurrent + EDelta;
1
Bystem. out.println{iPs1i200: i1 + psi[numberDivisions]
+ 1 E: 1 + round|{ECurrent) )
1
System.out.printin{iinThe ground state energy is 1 +
round (ECurrent) + 1 MeW.1):
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public double caloculatekSguared|int ol
{
dothle = [hZTera * a) + xMing
return {({0.08) f ECurrent) - [(x * =) * 5.63e-3)1);

public double calculatellextFsiiint nl

{
deuble EEqiMinuaine = calsulatreRSquared{sn - 1}
double KESgN = caleculateRSquared(n)
double KSgWPlusine = calculateESguaredi{n + 1};

gouble nextPsi = 2.0 *[l.0 - {2.0 * hiero * hieroc *
ESgl / 12.01) * psilal:
neXxEPsEl = nexEPELl - (1.0 + {(hAZ&ra * hiers ¥

ESgiMinusdne f 12,001} * palin - 1];

nextPsi = nextPai /(1.0 + (hEerc ¥ hZero * ESghPlusine
S 1z.00)1

return nextPsi;

public double round{double wal)
{
doukle divider = 1000080;
wal = wal * divider:
aouble temp = Makh. roumd{val):
return (double] temp / divider;

}

Okay, now you can compile the code with javac, the Java compiler (if javac
isn't in vour computer’s path, be sure to add the correct path to your com-
mand-ling command, such as ¢ =0 javatibhint javacr sa.javal,

Crxjavas sa, java

This creates seoclass from gegona, and vou can run ge.class with lava itself
{adding the correct path if needed):

Cr=java =se
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Running the code

When vou run the java code for the harmonic oscillator Schrddinger equa-
tion, It displavs the successive values of Yy, as it adjusts the current guess
for the energy as it narrows in on the right answer — which it displavs at the
end of the run, Here's what vou see:

Ci=java =a

PSTE00: =1.050364405%T337TTTEE-4 E: 1.4%
PSI200: =1.060354423285303E-4 E: 1.4%9
FSIZ00: -1.050344436R533108BE-4 E: 1,452
PSTA00: -1.0503344504260495E-4 E: 1.4%2

PEI200: =6.128208T2814324E=-E E: 1.50066

PSIZ00: -&6.03L1L375321356655E-8 E: 1.30066
BSTA00: -3.934046348307534E-E E: 1.30066
BSIZ200: -5.836965180600015E-E E: 1.30066
PSI200: =5.7308839754617TTHE-B E: 1.30066

PEI200: =5.642802%151212084E-8 E: 1.50066
PSIZ200: -5.545T215252899224E~-8 E: 1.50066
PSTA00: -5.44864080E665L3986E-E E: 1.30066

BSI200: -5.3515539T0Z201636E-E E: 1.30066
BEI200: -5.2544TET2I0THI3IEE-R E: 1.30066
PEIZ200: =5.1587397T14326237TE=8 E: 1.50066
PSIZ00: =5.0603165010122028=-8 E: 1.530066
PSI200: -4.963235841725TME-B E: 1.530066
BSIZ200: -4.B66154%15227T413E-E E: 1.30066
BEI200: -4.76807404109271214E-8 E: 1.50066

PEI200: -4.67199320E895691944E-B E: 1.50068
PSI200: =-4.5T4912368974434E=8 E: 1.30066
PSI200: -4.4778315322587503E-8 E: 1.50066
PSIZ00: -4 . 380750720476514E-8 E: 1.50066
PBSI200: -4 . 2H36TO0STHZLIZE-B E: 1.500&6

BSI200: -4.186389345Z173TEE-RE E: 1.30066
PEIZ00: -4.0H9530858TI1H4064E-B E: 1.50066
PSIZ00: =-3.99242T79352262018-8 B: 1.50066
PEI200: -3.8R534726TI066213E-8 E: 1.50066
BSI200: -3.7890826&65057731E-8 E: 1.50066

BEI200: -3.70118368038502826E-E E: 1.30066
BPSI200: -3.6041053453b020206E-B E: 1.30066
PET200: -3.507024%459509914E-8 E: 1.50066
PEIZ00: -3.409544421T7H751T4E-8 E: 1.50068
PSI200: -3.3128639113881%4E-8 E: 1.530066
PSI200: =-3,2157834T10061915E-8 E: 1.50066
BSI200: -3 .1187030089002856E-8 E: 1.50066
PEIZ200: -3 .021622612594330E-8 E:r 1.30066



? 2 4 Part |l: Bound and Undetermined: Handling Particles in Bound States

PEI200: -2.92454219%985136167E-8 E: 1.50066
PSI200: =-2.82746181T2375255E-8 E: 1.50066
BSI200: -3.730381523443637T03E-8 E: 1.50066
BESL200: -2.6333011360633T7E-E E: 1.30066
PEI200: -2Z2.530220888B510868E-B E: 1.500D66

PEI200: -2.42391406320B850148-8 E: 1.50066
PEI200: =-2.342060424823075E-8 E: 1.530066
PSIZ200: -2.244380221960756E-8 E: 1.30066
BSL200: -2.147300005347443E-E E: 1.30087

PET200: -Z2.050B198285624332E-B E: 1.50067
PET200: -1.953739T616H23192E-8 E: 1.5%0067
PEIZ200: -1.856659460208661053E~-8 E: 1.50067
PSI200: =1.75957T9532R862T2332E-8 E: 1.50067
PSIZ200: ~-1.6624334T037T785535E-8 E: 1.50067
PBSI200: -1.565419461B52802E-8 E: 1.30087
PEIZ200: -1.46B3394T80H36424E-B E: 1.5008&7
PET200: -1.37125945%%2034145E-B E: 1.50067
PSI200: =1.27417553159638587E-8 E: 1.50067
PSI200: -1.177099622R063948E-8 E: 1.30067
FSIa00: -1.080019T142733883E-8 E: 1.500&7
PEL200: -9.B2U39THESZNAIIE-Y E: 1.30087

The ground state ensrgy is 1.50087 Meav.
And there vou have it — the program approximates the ground state energy
as L0067 MeV, pretty darn <lose to the value you calculated theoretically
before: 1,30 MeV,

Very cool,
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In this part . . .

Flngs that spin and rotate — that's the topic of this
part, Quantum physics has all kinds of things to say
about how angular momentum and spin are quantized,
and you ses it all in this part,




Chapter 5

Working with Angular Momentum
on the Quantum Level

In This Chapter
Angular momentum
Andular momentum and the Hamiltonian
Matriv representation of angular momentum
Eigenfunctions of angular momentum

n classical mechanics, you may measure angular momentum by attaching
& golf ball to a string and whirling it over vour head. In quantum mechan-
ics, think in terms of a single molecule made up of two bound atoms rotating
around each other, That's the level at which quantum mechanical effects
become noticeable, And at that level, it turms out that angular momentum
is quantized, And since that has tangible results in many cases, such as the
spectrum of excited atoms, it's an important topic.

Besides having kinetic and potential energy, particles can also have rotational
ernergy. Here's what the Hamiltonian (total energy — see Chapter 473 looks
like:

L
H o

Here, L is the angular mementum operator and [ s the rotation moment of
inertla. What are the elgenstates of angular momentum? If L is the angular
momentum cperator, and [ Is an elgenvaloe of L, then vou could write the
following:

LI'
H[f == 55|i = Incomplete!

But that turns out to be incomplete because angular momentum is a vector
in three-dimensional space — and it can be pointing any direction, Angular
momentum is typically given by a magnitude and a companent in one
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direction, which is vsually the Z direction, So in addition te the magnitude [
vou also specify the compenent of L in the Z divection, L, {the cholce of Z is
arbitrary — you can just as easily use the X or Y direction),

If the quantum number of the Z component of the angular momentum I8 des-
ignated by m, then the complete eigenstate is given by [ m=, 30 the equation

becomes the following:

L

1
Hlfm == = I,m >

That's the kind of discussion about eigenstates that [ cover in this chapter,
and | begin with a discussion of angular momentum,

Ringing the Operators: Round and
Round with Angular Momentum

Take a look at Figure 3-1, which depicts a disk rotating in 31 space. Because
v 're working in 30, von have to go with vectors to represent both magni-
tude and divection,

|
Figure 5-1;

A ratating
disk with
anguliar
mamentum
wactar L
—
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As vou can see, the disk's angular mementum vector, L, points perpendicular
to the plane of rotation, Here, vou can apply the right-hand rule; If vou wrap
vour right hand In the direction something is rotating, yvour thumb points in
the direction of the L vector.

Having the L vector point out of the plane of rotation has some advantages,
For example, if something is rotating at a constant angular speed, the L
vector will be constant in magnitude and direction — which makes more
sense than baving the L vector rotating in the plane of the disk's rotation and
constantly changing direction.

Because L is a 3D veclor, it can point in any direction, which means that it
has x, ¥, and z companents, L. L, and [, (which aren’t vectors, just magni-
tudes), You can see L in Figure -1,

Lis the vector product of B (position) and P (L = R = P). You can also write
L., L.. and L. at any given moment in terms of operators like this, where P,
F.. and P_ are the momenfum operafors (which return the momentum in the x,
v, and = direetions) and X, Y, and Z are the position operators (which retuen
the position in the x, v and z directions)):

W L =YP, - £F,

w L o= P, - XP.

.= XP,-YF,

You can write the momentum operators F,, P, and F_as

F,L = —ﬂ'?FE
.
F, = r'r?EIy
.
P, = m?E

Therefore, substituting these operators in the L, L, and L. equations, you
can write the equations as

S f il ed
L, =~ Y= 3;&@]

——al 7 d v A
w L, =—i Ea: :-:a;]

o al v
L,=- KEIJ-' Yﬂx]
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Finding Commutators of L, L, and L,

First examine L, L. and L. by taking a look at how they commute; if they
commute (for example, if [L,, L] = 07, then vou can measure any two of them
(L, and L,, for example) exactly. If not, then they're subject to the umeertainty
redalion, and you can't measure them simultanecusly exactly.

Okav, so what's the commutator of L, and L,? Using L, = YP. < 2P, and L, -
2P = XP., vou can write the following:

[l B = [YP. - 2P, 2P, - XP.]
You can write this eguation as

[L.L,] = [YP, ZP,] - [YP. XP,] - [ZP, ZP,] + [EP,, XP.]
= Y[P, ZPP, + X[Z P .]P,
- MNP, - YP,)

But XP, =P, = L, so[L. L,| = thl.. S0 L, and L, don't commute, which means
that viou can’t measure them hoth simultaneously with complete precision,
You can also show that [1, L) = il and [L. L] = #il..

Because none of the components of angular momeantum commute with each
other, vou can't measure any bwo simultaneously with complete precision,
Hats.

That also means that the L. L. and L, operators can’t share the same eigen-
states, 50 what can vou do? How can you find an operator that shares eigen-
states with the various components of L so that yvou can write the elgenstates
as | m=?

The nsual trick here is that the square of the angular momentum, L, is a
scalar, mot a vector, so it'll commute with the L, L. and L. aperators, no
problem:

(L5 L] =0

w [L°L,] =0

e (L, L] = 0
Ohcav, cool, you're making progress, Because L. L, and L. don't commutbe,

you can't create an elgenstate that lists quantum numbers for any two of
them, But because L. commutes with them, you can construct eigenstates
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that have elgenvalues for L' and any one of L, L, and L., By convention, the
direction that's usually chosen is L.

Creating the Angular Momentum
Eigenstates

OF

MNow's the time to create the actual eigenstates, |1 m=, of angular momentum
states in guantum mechanics, When you have the eigenstates, vou'll also
have the eigenvalues, and when vou have the elgenvalues, you can solve

the Hamiltonian and get the allowed energy levels of an object with angular
maymentm.

Don't make the assumption that Tln= E':ILF‘J'.IEfF.lTE'"i are |, m=; rather, say they're
|, Bi=, where the eigenvalue of L7 is L e, b= = Fral o, =, So the eigenvalue of
L" is f'ex, where you have yvet to solve for o Similarly, the eigenvalue of L. is

L Lo, fi= = fp (e, B

To proceed further, you have to introduce madsing and lowerng operators (as
voul do with the harmonie oscillator in Chapter 43 That way, you can sclve
for the ground stake by, for example, applving the lowering operator to the
ground state and setting the result equal to zero — and then solving for the
ground state itsell,

In this case, tho raising operator is L, and the lowering operator is L. These
operators raise and lower the L, guantum number. In a way analogous to the
raising and lowering operators in Chapter 4, you can define the raising and

lowering operators this way:

W Raising: L, « L, + (L,
b Lowering: L_= L, L,

These twa equations mean that

I.
Lo=5{l.+L)

=gll.-L)

You can also see that

LL =L +L =nl,=L" =L =1L,

131
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That means the following are all equal to L

R Tl I P R
R I T B
o L5 - %(L_LL fLLY+ LS

You can also see that these equations are frue;

P (L L] =0
e L, L] = 2KL.
o [L., L] =+l

Ocay, now vou can put all this to work. You're getting to the good stuff,
Take a look at the operation of L, on la, B2
L, lee, i = 7
To see what L e, b= s, start by applving the L. operator on it Hke this;
LoL L, fie =7
From [L.. L.] = #6L., youw can see that Lo L, - L L. =&L_, 50
L.L, fex B =L, L. low, B + 8L, |, B>
And because Lo, f= = B, you have the following:
Lo L. L, fi= = R+ 130, Dre, fie

This equation means that the eigenstate L. |, [i= is also an eigenstate of the
L. operator, with an eigenvalue of (i + 13, Or in a more comprehensible way;

Ll f==cle, b+ 1=

where ¢ is a constant vou find later in “Finding the Eigenvalues of the Raising
and Lowering Operators.”

5o the L, operator has the effect of rasing the f quantum number by 1.
Similarly, the lowering operator does this:

Lolag, == cliz, =1~
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Mow take a look at what L'L. |, i equals:

B

L*L, lax, f= =7

Because L is a scalar, it commutes with everyvihing, L* L, — L, L* =0, sa this is
true:

Lo L o, B = L, L7 |, e

And because LY e, fi= = obi’ e, b=, you have the following equation:
L7L. lue, B = oefi* L, | ce, s

Similarly, the lowering operator, L, gives vou this;
L* L |, P = ah® L_l o, =

S0 the results of these equations mean that the L, operators don't change the
o eigenvalue of [o, B at all.

Okav, a0 just what aee o and BT Read on.

Finding the Angular Momentum
Eigenvalues

The eigenvalues of the angular momentum are the possible values the angu-
lar momentum can take, 50 they're worth finding, Let’s take a look at how bo
do just that.

Deriving eigenstate equations
"ﬁtﬁ Bmﬂt ﬂﬂd Bmfﬂ'

Mote that 1: - I.:E = ]._f + [.f, which is a positive number, 50 L - I._.= =100, That
means that

e, BIL = L. i, =200
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And substituting in L' e, B = of” and L. e, fi= = it glves you this:
o, BIL = L e, e = K (e— ) 20

Therefore, o = ﬂ-ﬂ- 2o there's a maximum possible value of B, which vou can
EHJ] E‘IIII.'.'

You can be clever now, because there has to be a state T, B> such that
vou can't raize b any more, Thos, i you apply the raising operator, vou get
Zera:

L, Loty = =0
Applying the lowering operator o this also gives vow 2ero;

LL e B =10
And because LL, = LF - ]_:: —fiL., that means the following is true:

(L= L7 =L e, By = O

Putting in L e, B> = o and L. e, five < 5,6 gives vou this:

f'-"' - |5||-1.-'.-I - Jslrs'-.'r.:'ﬁ: =1
ﬂ = ﬂ::ﬂml‘l’-‘h’ T 1} = ‘”

Cool, now vou know what o is. At this point, it's usual to rename B, as [and
B as i, 50 o, f= becomes 1, m= and

W LA e = i+ DA me
e Lo e = meh L e
You can say even more, In addition toa [b,.,.. there must also be a i, such
that when you apply the lowering operator, [, you get zero, hecause you
can't go any lower than i,
L'\-I |Il ﬁulul" = c]

And yvou can apply L, on this as well:

L'L'\-I ‘Il ﬂl:lillb = {l
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From LL. = L' =L." = fil.., vou know that
(L - L7 il o By =0
which gives you the lollowing;

(= P + P " =0

= |:II||||||--I * Pmiln = [':I
L = |-:|'|I||I|: - I3I|||l'|
et # Py oy = 12
And comparing this equation to o = B AB,... + 17 =10 gives you
.BI'I'.'I.'I' = _ll._l:ll

MNote that because vou reach lo, B = by o successive applications of L on
let, By, vou get the following:

Err-n.'r = |]'-'|i|| +dl

Coupling these two equations gives vou

I:!'rr.w = 1.|I.'
Therefore, B, can be either an integer or half an integer (depending on

whether n is even or odd).

Because ! = B m = Band #is a positive number, vou can find that <{<m = |
Sonow you have it

 The eigenstates are | 7=,

= The quantum number of the total angular momentum ks f

= The gquantum number of the angular momentom along the = axis is m.

W LI ms = 00+ 1300, me, where § =100 ', 1,55,

o L e = Lo, where me == =({I-13, ... 1-11

sl

For each { there are 2{ + 1 values of m. For example, if { = 2, then m can equal
=2,=1, 0, 1, or 2. 00§ = 4, then mr can equal =", ='s, =5, s, %, and s,
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You can see a representative Loand Lo in Figure 52, L is the total angular
maomentum and L, ks the projectien of that total angular moementum on the
z axls.

—
Figure 5-2:
LandL,
I

Getting rotational energy
of a diatomic molecule

Here's an example that involves finding the rotational energy spectrum of a
diatomic molecule, Figure 53 shows the setup: A rotating diatomic molecule
is composed of two atoms with masses m, and my. The first atom rotates at
r=r, and the second atom rotates at r = r, What's the molecule's rotational
EnETEy?
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|
Figure 5-3:

A ratating
diagtomic
miolacula.
|

I i5 the rotational moment of inertia, which is
1= mlrl-l * r:”:-"":-:-I =.'J";

i i
where r=lr—rl and g=——"—,
T i, + .

Becanse L = lu, L = |.u;-n.'-. Thersfore, the Hamiltonian becomes

L _ L
H_E[ 2ur’
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So applying the Hamiltonlan to the eigenstates, | o=, gives vou the following:

L!

HIfL == TS

{.m

And as vou know, L* 1L m= = §i « 1% |, m=, so this equation becomes

L 1(1+1)4°

=1 7 == — {1t
2r’ 2’ |

HI|fm =

And because HI L we= = ENL m=, vou can see that

i+

E !
2ur

And that’s the energy as a function of § the angular momentum quantum
number.

Finding the Eigenvalues of the Raising
and Lowering Operators

This section looks at fnding the eigenvalues of the raising and lowering angh-
lar momentum operators, which raise and lower a state's z component of
andular momentum.
Starl by taking a look at L., and plan to solve for o

LI ==l e+ 1=

So L1, m= gives you a new state, and multiplving that new state by its trans-
pose should give you o

(L m=YL, 1, m= =
Tar see this equation, note that (L, 1L m =-_]an_ IL rrs = "=l o+ 1100 = 1= = 2,
On the other hand, also note that{L, 1L m=1'L, 14 m= =< L mL L_|{ mt= 50
you have

<, mIL LI, me=¢
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What do you do about L, L7 Well, you see earlier in the chapter. in "Creating
the Angular Momentum Eigenstates,” that this is troe; L L. = L= L7 + kL. 50
vour equation becomes the following:

o, mILf - L + bl me =
Great! That means that ¢ is equal to
= (=<f mlIL* =L + il 1L =)™

Sowhat is (=4 mIL =17 + 6L, 1, m=)""7 Applying the L and L, cperators
ghves vou this valee for ¢

=R+ 1y=mim+ 13"

And that’s the eigenvalue of L, which means you have this relation:
L0, sir= = #[ K1 = 11— mnlee + 1351 o+ 1=

Shmilarly, vou can show that L, gives vou the following:

L1l m = G[KE s 1) = m(m = 1] m = 1=

Interpreting Angular Momentum
with Matrices

Chapter 4 covers a matrix interpretation of harmonic oscillator states and
operators, and you can handle angular momentum the same way (which
often makes understanding what's going on with angular moementum easier).
You get to take a look at the matrix representation of angular momentum on
& quantum lavel now,

Consider a system with angular momentum, with the total angular momen-
tum guantum number { = 1, That means that m can take the values -1, 0, and
L. 3o vou can represent the three possible angular momentum states like this:

[1,-12=

0

]

l
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|'|..'|:| =

[1,-1==

Okaw, so what are the operators }'Inu'x'ﬂ seen in this chapter in matrix repre-
sentation? For example, what is L™ You can write L7 this way in matrix form:

L:
SN E IR S B S R R | B R B
LOLL1> < L0LLes <10l L-1>
S R ey B | TR ) B | gl B

Okav, <1, 1ILL, 1= = 0(f « D8 = 26% <1, TILTIL, O = 0 <], 0IL711, 0= = 247
and so on; Therefore, the preceding matrix hecomes the following:

1

00
2K
L VS

And vou can also write this as
L’ =

1 00

' 1 0

o1

5o in matrix form, the equation L*11, 1= = 25711, 1=becomes

1 0 0l
2501 0|0
0 1)
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This equals the following:
| I O 0

2RO =2%"0 1 o0

0 o0 10

How about the L. operater? As vou probably know (from the preceding sec-
thom), LoV m = B[+ Ty =wmlm o« 1377 1 m o« 1=, In this example, = 1 and m
= 1,10, and -1, 50 vou have the following:

e LI 1= =10
o L |10 == 2R|11 >

por L L =1 = 2810 >

5o the L, operator looks like this in matrix form;
L. =

u'E.rl

==

1o
01
0o

Therefare, L1, 0= would e

L. |10 ==

o1 o
SEROo0 0 1

a0 an

And this equals

L [L0=>=
1 o1 O
2RI =280 0 1)1
0 o0 Ol

In other words, V2|11 5= L_l].ﬂ:- .

141



Tﬂ ,2 Part lll: Turning to Angular Momentum and Spin

Ckay, what about L7 You know that L e = 6100« D =mim=1]""11 m =
I=. In thiz example, I = 1and a1 = 1, ), and =1, 50 that means the following:

o L [L15= 20|10 =
o L (L0 5= ZR[1 -1
Wl |L-1==0

So the L. operator Iooks like this in matrix foro:
L=
000
JIRT 00
01 o

That means that I_ 11, I» would he

L. |Li==
o0 a1

JIET M ﬂl ]
01 'I:I! 0

This equals

L |Li==
i 00 u||
SZh(1|= 481 0 of0
I 01 uﬂ!

Which tells vou that
IR LD == L_|L1=

Just as you'sd expect.
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Ckay, you've found LY, L., and L. Finding the matrix representation of L. is
simple because

o il ], 1= = 1.0 1, 1=
0= L1 1, 0
W 11,15 =101, -1

S0 vou have that

Thus L, |1, =1= equals

L, |1L-1==

I G 00
MO 0 0|0
o0 =11

And this equals
L,|1-1>=
] 140 0 10
| =k0 0 0O 0
1 00 -1-1
SoL,0l =1===hll, =1=

Mow what about finding the L, and L, operators? That's not as hard as vou
may Lhink, because

i y
L, = El-l" +L_ )

ancl

L, =£;[L. -1}
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Take a look at L, first, L, equals
L=
no1 i

JZhlo 0
000

—

Amnd L_ equals

= =]
-

h

¥

s

= e
= S s
e R N -]

~i{L-L,)
Okay, now what about L,? L. = 2 S0

Cool. This is going pretty well — how about calculating [L,, L, )7 To do that,
you need to calculate [L,, L) = L,L, = L,L,. First find L,L,:

LL
o1 0k = 0
Eloo ol oo
2 )
1 ok = ]
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This equals
LL =
=ﬂ I g0 - 0 i 0 -
i ; N
5 1O 1 0O - 2 1 0 0
o1 o o§ N i =i

And simitarly, L,L, equals
LL =

0 = 00 1 0

L P PR

[ N ¢ T

And this equals
LL, =
0 —i 0| 1 0 |= o =
%4 0 =il o 1=|o0 o o
o F 00 1 0 io0oi

SHo

[L.L, =Ll -LL,
200 i
o0 o

0 -2

%—n
0

And this equals
[L.L, ]=LL, -LL,
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But hecause
L,=
I & 0
Ay G
0 0 -1

Yo Can rtwrili:LL'r-L-J=L-Lf—|-~|—-. =
I 00
A0 00
o a -]

like this:[ L, L, |=L,L, -L L, =ilL,

Caoal, so [L, L] = ikl

Rounding It Out: Switching to the
Spherical Coordinate System

5o far, this chapter has been dealing with angular momentum bras and kets;
JEZR[LD =L |11

The charm of bras and kets is that they don't limit vou 1o any specilic system
of representation (see Chapler 23 50 vou have the general eigensiates, but
what are the actual eigerdfumciions of L, and L*7 That is, vou're going 1o tryv to

find the actual functions that vou can use with the angular momentum opera-
tors like 1" and L.,

To find the actual eigenfunctions (not just the eigenstates), vou turn from
rectangular coordinates, x, v, and z, to spherical coordinates because it'l
make the math much simpler (after all, angular momentum is about things
going around in circles). Figure 5-4 shows the spherical coordinate system.
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'y /
—
Figure 5-4: Ef’”{{
The
spharical
coordingte
system,
—

In the rectangular (Cartesian) coordinate system, you use x, v, and = to arient
vourself, In the spherical coordinate system, vou also use three quantities: r,
6, and ¢, as Figure 5-4 shows. You can translate between the spherical coor-
dinate system and the rectangular one this wav: The rvector is the vector to
the particle that has angular momentum, 8 s the angle of rlrom the 2 axis,
and ¢ is the angle of rfrom the x axis.

B w = P Rind cosh

By aing sing

Bz = FoosH

Consider the eguations for angular momentom:

Yo _#d
L, =%F, ﬂ‘_m[az Eil]

L, =ZP — -m{ Zd _ :':*]

: - ¥i¥a
L, = XP, - YP, ‘“[ay ELr]

When you take the angular momentum equations with the spherical-coordi-
nate-system conversion equations, vou can derive the following:

5 _ =il
e L il
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d ., feosd &
L.=L, +, =# i
e L=L, 4L, = he [:JE sind aup-]

L - o d L dcosl &
p,fl..—].‘ ﬂ'_. —f ({.]H+ Eil'lﬂ'l;'?-l:l']

Cheay, these equations look pretty Invelved, But there's one thing to notice:
They depend only on & and §, which means thelr eigenstates depend onlv on
B and §. not on r 50 the eigenfunctions of the operators in the preceding list
can be denoted like this:

<B, &4, e

Traditionally, vou give the name Y, (8, #) bo the eigenfunctions of angular
momentum in spherical coordinates, so you have the following:

W U, @) = <fh, 1w
All pight, time to u::uﬂ-: on finding the actual form of Y, (6, % You know that

when you use the L7 and L. operataors on angular momentum eigenstates, vou
det this;

LA = = K+ DY L e
L.l i = 0, mes

So the [ollowing must be troe:
b LY (8 ) = I+ 1Y (8, )
LY, B = w8
In fact, vou can #o lurther, Note that L. depends only on 8, which suggests

that vou can split ¥,,,{8,4) up into a part that depends on 8 and a part that
depends on &, Splitting Y (0.4 up into parts looks like this;

Vi (8a) = Oy, (B, (4)

That's what makes working with spherical coordinates so helpful — vou can
split the eigenfunctions up Into two parts, one that depends only on & and
one part that depends only on 4.
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The eigenfunctions of L, in
spherical coordinates

Start by finding the ecigenfunctions of L, in spherical coordinates. In spherical
coordinates, the L, operator looks like this:

o o
L, _mﬁh;lfl

S L_—‘l'rJ,"':-_H. {':} = L:{'-':'IL-\.{H:]:]!I-\.{':D:] is

L6, (0)0.(¢]=-nLe. (0)0.(s)

which is the following:

'-=E3...[ﬂ}=t=..[¢-]=—r:ra.,(a}%(¢}

And becavse LY (0,0) = aliy,,(0,4), this equation can he written in this version;

—itie,, | 8] ’]'.:;

. ['1:'] =ﬂ1-rlﬁlhll:ﬂ}¢.,[¢l]

Cancelling oot terms from the two sides of this equation gives wou this differ-
ential equation;

o,
i

(¢)=ma {4)

This looks easy to solve, and the solution ks just
W, g} = Ce™
where Cis a constant of integration.

You can determine C by insisting that @,(¢) be normalized — that is, that the
[ellowing hald true:

o (p)o.{¢)ds=1
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which gives you

cm—L
[Ef:r]-z

Sov (8] is equal to this:

o (s)o€”
9] =

You're making progress — vou've been able to determineg the form of @ (¢,
s00Y 08,800 = 8, 08D 000, which eguals

Yi,i'ﬂ.ﬁ'] = E.'Ih,[ﬂj'!'[!‘ [¢']= Elhl:ﬂ}[zﬂ'jl"

That's great — you're halfway lh+ere. but yion st have to determing the form
of &  (8), the elgenfunction of L°, That's coming up next.

The eigenfunctions of L in
spherical coordinates

Mow you're going to lackle the eigenfunction ol L*. &,.(8). You already know
that in spherical coordinates, the L operator looks like this:

sl | gt 1 &
L ‘"[smu aa{ﬁ'“”auJ*siu*ew]
That's quite an operator, And you know that

v, (8.6)=0, (8]
( ]L:a;-:} :

S applying the L aperator to Y, (0.6} gives yvou the Following:

1_.d [Eil]ﬂi]f ] JHW[H]E“'

LY, (B8}~ —

{EE]I“ sind ag o8 ) sin’ gagt
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And because LY, (0,60 = K« 1Y, (8, @) = i{{ + D 0dmia)d, (6], this equa-
tion becomes

]

—i* 1 a1 . 1 i
[ EI[LHQE]*SIH:M:]E\.iH]E

[2,1-]': | sind J8

=i+ 1he, (8-
]{2#] :

Wow, what have vou gotten In to? Cancelling terms and subtracting the right-
hand side from the left finally gives you this differential equation:

1 2 X 1 a_J | LU o _
gl 00y e gy o Bl tlr o, o)e= -0

s

Combining terms and dividing by ¢

2 :lrl-llﬁi"ﬂa{]ﬂ B“{EJJ'['I[{ ) r.:::E ]B“ 8)=0

gives vou the following:

Hobv cow! [sn't there someone whao's tried to solve this kind of differential
equation hefore? Yes, there is, This equation is a Legendre differentiol eqia-
fign, and the solutions are well-known, (Whew!} In general, the solutions take
this form:

BI.“(Bj = Ir-l.'mpl'lul:tui‘e.]
where P, (c0s8) is the Legendre funclion.,

So what are the Legendre functions? You can start by separating out the i
dependence, which works this wav with the Legendre lunctions:

P, [x}={1-x7) =$Pl{r]
where Pl is called a Legendre polvnontial and ig given by the Rodrigues
formula:

P )= gt -1)
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You can uge this equation to derive the first few Legendre polynomials like this:

= Palx)=1

e Py = x

e P} = (A = 1)

W Poah = ) (Gx = Bx)

e P o= 0 (35x = 3007 + 3)

e Poin) = s (637 - TN + 15x)
and so on, That's what the first few P(x) polynomials look like. 30 what do the
associated Legendre unctions, Py, 00 leok lke? Youw can also caleulate them, Yoo
can start off with Py (x), where m =), Those are casy because Pyla) = Filx), so

e Plx) = x

o N TR i Tl

b Pogl) = 12 (5’ = 3x)

Alsa, you can find that

b Pula) = (1= 27"
W Pox) = 31 -2
b Poo(x) = 301 =)'
o P )= 3500 1) 1 x0)
o o) = 1501 = x7)
W P = 1301 =27y "
These equations give you an overview of what the P, functions look like,

which means vou're almost done. As vou may recall, &, (8}, the 8 part of
Yol B, 4 08 related ko the Py, functions like this:

El.'ﬂ{:H..:l = C'm]jl'll'l:cus‘a:l
And now vou know what the Py, functions ook like, but what do C,,, the con-

stants, look like? As soon as you have those, vou'll have the complete angular
momentum eigenfunctions, ¥, (8, 4}, becavse Y, (8, &) = 6, (60D, ().
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You can go about calculating the constants C,,, the way you always calculate
such constants of integration in quantum physics — vou normalize the eigen-
functiens to 1, For ¥ (0,6} = 8, (@ (¢, that looks like this;

J_f;m]*r'“' (0.0, (0.0 )sing di=1

Substitute the following three guantities in this equation:

B l':|'.|||.-[.|:I q:":l = lI:::Il'u.ll:.“.:l :]:Il.:{"t'-]

e () e

(2m)"
W 8y (1) = Oy Py {cosi)

You get the following:

|{;:r|- Td¢j|P,,'{ cosfl)| sing dé =1

The integral over § gives 2z, 50 this becomes

c..)' f|P. {cost)| sine do=1

You can evaluake the integral bo this:

Boin other words:

(1) [[.{Hl] (1—m)!

wheremz[r
2{l+m!

Which means that

e, (8)= (-1]‘[%‘;’?% :[-’“ [cos8) where m 20

153
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Bo Y, (8, 4) =6, Ak (4]}, which is the angular momentum eigenfunction in
spherical coordinates, is

"hiﬂ-¢1=i—1l"l% 1

P _lcosf |e™ wherem 2 [}

The functions diven by this eguation are called the normalized sphenca! o
moweics. Here are what the first few normalized spherical harmonices look like:

PRMTIE

[4:w

Y, ) = ) cosi

pr Y, (00 =T{%rz]lzv"‘ sin it
B Yl ) = em) T (Beos e =1
o Vo B8] = [: ]Ff‘ ] 2™ sing
W Yo, 08, 80 = (em) " e sin e

In fact, yvou can use these relations to convert the spherical harmonics to
rectangular coordinates:

e SinFonsg= -
o 51r|ﬁ':1|:|'|.:|—i
e sl =2

=

Substituting these equations into

Lz -mpe ] -
Yo fa)=(-1] \W P.cosd e where m =0 gives vou the

spherical harmonics in rectangular coordinates:

o Yo xvz )=
|[~1,r|*

bena)=(Yer) 7,
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Pi"!l",,[.'l.' . 3]——[)_.3#] [Ii]}.;y

r

e Yol xy2)= l[r}ﬁ ]I 327 —r}}f
Vo (rz)=s(184 ) R0/

[ |{-’-'-J"- = ::' $[ lé’éiﬂ.‘] : A
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Chapter 6
Getting Dizzy with Spin

In This Chapter
Discovering spin with the Stern-Gerlach experiment
Looking &t eigenstates and spin notation
Understanding fermions and bosons

Comparing the spin operators with angular momentum cperators
Working with spin Y and Pauli matrices

pl}'siciEt:-; have suggested that orbital angular momentum is not the
only kind of angular momentum present in an atom — electrons could
algo have infrnsie built-in angular momentum. This kind of built-in angular
momentum ts called spin. Whether or not electrons actually spin will never
be known = thev're ag close to point-ike particles as vou can come, without
anv apparent internal structure. Yet the fact remains that thev have intrinsic
angular momentum, And that's what this chapter is about — the intrinsic,
built-in quandum mechanical spin of subatomic particles,

The Stern-Gerlach Experiment and
the Case of the Missing Spot

The Stern-Gerlach experiment unexpectedly revealed the existence of spin
back in 1922, Fhvsicists Otta Stern and Walther Gerlach sent a beam of silver
atoms through the poles of a magnet — whose magnetic field was in the z
direction — as vou can see in Figure 6-1,
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I
Figuire &-1;
The S1em-

Gerlach
BX[FEmment,
]

=1 Spin up

Silver atoms -

Spin dawn

Mlagnet Soraen

Because 46 of silver's 47 electrons are arranged in a symmetrical cloud, they
contribute nothing to the erbital angular momentum of the atom. The 47Eh
glectron can be in

e The 35 state, in which case its angular momentum is ! = 0 and the z com-
ponent of that angular momentum is

e The Jp state, in which case its angular momentum 5§ = 1, which means
that the z component of its angular momentum can be -1, 0}, or 1

That means that Stern and Gerlach expected to see one or three spots on the
sereen you see at right in Figure 61, corresponding to the dilferent states of
the z component of angular momentum.

But famously, they saw only two spots, This puzzled the physics community
for about three vears, Them, in 1925, phyvsicists Samuel A, Goudsmit and
George F. Uhlenheck suggested that electrons contained intrinsic angular
momentum — and that intrinsic angular momentum & what gave them a maig-
netic moment that interacted with the magnetic field. After all, it was appar-
ent that some angular momentum other than orbital angular momentom was
at work here, And that built-in angular momentum came to be called spin.

The beam of silver atoms divides in two, depending on the spin of the 47th
electron in the atom, so there are two possible states of spin, which came to
be known as up and down.
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Spincis a purely guantum mechanical effect, and there’s no real classical
analog, The closest you can come §s to liken spin to the spin of the Earth as

it goes arcund the sun — that is, the Earth has both spin (because it’s rotat-
ing on its axis) and orbital angular momentum (because it's revolving around
the sun}, But even this picture doesnt wholly explain spin in classical terms,
because it's concelvable that you could stop the Earth from spinning, But you
can't stop electrons from possessing spin, and that also goes for other sub-
atomic particles that possess spin, such as protons.

Spin doesn't depend on spatial degrees of freedom; even if you were to have
an electron at rest (which violates the uncertainty principle), it would still pos-
5855 Spin.

Getting Down and Dirty with
Spin and Eigenstates

Spin throws a bit of a curve at you. When dealing with arbital angular
momentum (see Chapter 30, you can build angular momentuim operabors
because orbital angular momentum is the prodoct of momentum and radios.
But spin is built in; there’s no momentum operator involved. 5o here's the
crux: You cannot describe spin with a differential operator, as you can for
orbital angular momentum.

In Chapter &, | show how orbital angular momentum can be reduced to these
differential operators:

~YP - 7P =—ih| vyt _gd
o L, = YP, - 2P, rJ'r[‘lrr.JE an]

n-'LE=EP,—?-:F‘_.=—H:[Ei— i]

dx iz

- i o
el =XP -YP =—ii| X—-=-%—
- F El I [ I'}_:ﬁ' ax]

Andd vou can find eigenfunctions for angular moementum, such as Y.

Yo xyz2) =|i !ESI_ ; [ 3':;,_?! }
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But because vou can't express spin using differential operators, vou can't
find elgenfunctions for spin as you do for angular momentum, 3o that means
that you're left with the bra and ket way of looking at things (bras and kets
aren't tied to any specific representation in spatial terms),

In Chapter 5, you also take a look at things in angular momentum terms,
introducing the eigenstates of orbital angular momentum like this: [, =
[where [ is the angular momentem quantum number and m is the quantum
nurmber of the z component of angular momentum’.

You can use the same notation for spin eigenstates. As wilth orbital angu-

lar momentum, you can use a total spin gquantum number and a guantom
number that indicates the spin along the z axis {(Nede: There's no true z axis
built In when it comes to spin — vou Introduce a z axls when you apply a
magnetic field; by convention, the z axis is taken to be in the direction of the
applied magnetic field).

The letters diven to the total spin guantum number and the z-axis component
of the spin are £ and s (vou sometimes see them written as £ and m). In other
words, the eigenstates of spin are written as |5 s,

5o what possible values can s and m take? That's coming up nexl.

Halves and Integers: Saying Hello
to Fermions and Bosons

In analogy with orbital angular momentum, yvou can assume that se (the z-axis
component of the spin) can take the valoes -5 -5+ 1, . 5- 1, and 5, where 5
is the total spin guantum number. For electrons, Stern and Gerlach observed
bwao spols, 50 you have 25 + 1 = 2, which means that s - '/.. And therelore, m
can be +/: or == 50 here are the possible eigenstates for electrons in terms
of spin:

I, o=
I 'lll.'. _llll:"
5o oo all subatamic particles have s = /27 Mape, Here are their options:

#* Fermions: In phvsics, particles with hali-integer spin are called fermmions.
They include electrons, protons, neatrons, and so on, even quarks. For
example, electrong, protons, and neutrong have spin & = /=, and delta
particles have s = %/,
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And the eigenvalues of the 5. operator are

5. |sm = =mﬁ|5,m:=— =+%|3,m::

You can represent these two equations graphically as shown in Figure 6-2,
where the two spin states have different projections along the = axis.

——
Figure &-2: N
Spin magni-
{ude and z
projection,
—

L |
=

ra |z

Spin '/: matrices

Time to take a look af the spin eigenstates and operators for particles of spin
1e i terms of matrices. There are only two possible states, spin up and spin
down, so this is easy. First, you can represent the eigenstate '), = like this:

‘ 1
17 17
|/é':"2} Lj‘

And the eigenstake |75, =5 looks lke this;

Mow what about spin operators like 37 The §° operator looks like this in

matrls terms;
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g
Vbl < lalslVes Vo
Sy e ke> <o hallhe)o>
And this works out to be the following:

- PRI
gt =3
"cl I} ]‘

Similarly, wou can represent the 5, operator this way:

¢ 1/ 1708170
< lals|laly> <)

1< 1411 1 If_]f E 17
{II ;.-" 3 ,-’“"f:I IJI:J} { ' |S| A2 2}

5, =

L
.-"IE ?

This works ok to

Using the matrix version of 5., for example, you can find the 2 component
of the spin of, say. the eigenstate ' == Finding the 2 component leoks
like this:

8 1o, <o

Futting this in matrix terms gives vou this matrix product:
LN R
20 1)1

Here's what vou get by perlorming the matrix multiplication:
ﬂ —
=

(k
1

-

10 -k
{ 2

20 ~1
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And putting this back into ket notation, vou get the following:

S[Vo-Ya>= 3!

|
/2= /2 ?
How about the raising and lowering operators 5 and 87 The 5, operator
Loy like this:
5 =
B0 1‘

|!u 0

And the lowering operator looks like this;

5 =
0o
||1 i

5o, for example, vou can figure out what 5,11/, == is, Here it is in matrix terms:

i
|

i 1n
a0l

Performing the multiplication gives you this:
w10 _ il
11 10

i1
O im kel form, 78 5, 10, =Y =t e, e, Coaol.

Pauli matrices

Sometimes, you see the operators 5, 5, and 5. written in terms of Paalf
mairices, o, g, and a.. Here's what the Paoll matrices look like:
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Chapter 7

Rectangular Coordinates: Solving
Problems in Three Dimensions

In This Chapter
Exploring the Schrédinger equation in the x, v and z dimensions

Working with free particles in 30
Getting into rectangular potentials
Seeing harmonic oscillators in 30 space

OHE-dII'ﬂEHS]ﬂt'Iﬁ] prohlems are all very well and good. but the real world
has three dimensions. This chapter is all abouot leaving one-dimensional
potentials behind and starting to take a look at spinless quantum mechanical
particles in three dimensions.

Here, yvou work with three dimensions in rectangular coordinates, starting
with a look at the Schrodinger equation in glorious, real-life 30 You then
delve into free particles, box potentials, and harmonic oscillators. Nede: By
the way, the next chapter uses spherical coordinates becavse some problems
are betber in one system than the other. Problems with spherical symmetry
are best handled in spherical cocrdinates, for example.

The Schridinger Equation: Now in 3D/

In one dimension, the time-dependent Schridinger equation (ol the type in
Chapters 3 and 4 that let you find the wave function) looks like this:
o

_lr-":' I}E ' ]
Sy )Vt let)= i Ly x)
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And vou can generalize that into three dimensions like this:

= [ WP SO & . TR I TR
H[F*’FJ'EJ?}W[I”T'M] 'n-'l{r]np{:-}.z-:_:n_mmlp{g_y,z_;_;

Using the Laplacian operator, you can recast this into a more compact form.
Here's what the Laplacian looks like:

&9 & | g
[:FJ.t“'+r'J}r’+Hz’]_?

And here's the 3D Schradinder equation using the Laplacian:

B (2 _ipd
am W w[.r,}-'.z,.r}ﬂ.' |_r.:.,_.r]|||rli.r~y.z,f}_ il = w{x,y,z,r}l

To solve this equation, break out the time-dependent part of the wave
[ tion:

'u""[-l'._'l-',:.!] 'F(A'-}'.E::IE 1B

Here, wix, v, 2} is the solution of the time-independent Schrddinger equation,
and E Is the energy;

SV (V2 W 0002) — p(y.3)

S0 far, 5o good. But now you'se run into a wall — the expression "-'-"i,!.r[x.y.z |

is in general very hard Lo deal with, so the current equation ks in general very
hard to solve,

S50 what should vou do? Well, you can focus on the case in which the equa-
tion is seporoble — that is, where vou can separate cut the x, v and z depen-
tlence and find the solotion in each dimension separately, In other words, in
separable cases, the potential, Vix, v, 2], is actually the sum of the x, v, and 2
potentials:

Vi v 2) =V (xh+ V)« V()

Mow you can break the Hamiltenian in %\"’W[I.}',z] +Vixy zjwlxyz)

= El;rl::r,y,z:I into three Hamilitonians, H, H,, and H.:
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(H, + H, + H.)wix, ¥ 2} = Eyilx, v, 2)

whers
.2;1-:1 fﬁ +¥ [.s:]
5
E.rn iy’ HY, {}r]

I
ot L 2m oz’ HV [E]

When vou divide up the Hamiltonian as in (H, « H, + H ey, v 20 = Egily, w23,
wou can also divide up the wave function that solves that equation. In par-
ticular, you can break the wave function into three parts, one for x, v, and =

iy, 2) = Ra¥(vid(z)

That's going to miake lile congiderably eagier, because now you can break the
Hamiltonian up into three separate operators added together;

The total energy, E, is now the sum of the x component’s energy plus the ¥
component’s energy plus the z component’s energy;

E=E.+E +E;

5o you now have three independent Schridinger equations for the three
dimensions:

> Ema R[Jr] Vix)X{x)=E X(x)

() vy Yiv)=E, Y ()

p-fafn a& Z{z)+V(ry)Z{z)=E.Z{z)

171
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—h* & B ol
P G

TRt .
o G e YD EN ()

T 2
- 2 37 22) = E2(2)

If you rewrite these eguations in terms of the wave number, & where

:_ 2mE . .
k= e . then these eguations become the following:

%)=~k K x)

ot

& wiwl=—k Y[ v
o gy )=k ()
e z)m k23]

In this section, yvou take a look at the selutions to these equations, find the
tofal energy, and add time dependence,

The x, y, and z equations

Take a look af the xequation for the free particle, %K[I}: —f X[ x|, You
can wrike i1% gensral solution as

:':.':.-l':l - Mll.-.

This ia a plane wave, and normalizing it {as | discuss In Chapter 3 gives you
this:

?‘:[.5.']-_ 1 e
{2x)

The v and 2 components follow the same larm:
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Mote that k," + &, + k.” is the square of the magnitude of & — that Is, &,
Therefore, you can write the eguation for the total energy as

_i 3 ] ."=£ ]
E_E.li-i-lllk' tROTR E.li'i'k

Mote that because E 15 a constant, no matter where the particle Is pointed,

~ i |,':|= . 1 . 'i:]a' . .
all the eigenfunctions of FK{A']H—JL X[x), FYlF]=_k' ¥{¥], and
i

E-_.E.[:} k. ‘E{z] are infinitely degenerate as vouvary & & and &..

Adding time dependence and
getting a physical solution

You can add time dependence to the solution for ywix, v, 2), giving you glx, ¥,

z, £, if you remember that I,u'l:-f.}-'.-?.!']'= hﬁ’{ Xy Ile T . That equation dives

wou this form lor wix, v 2 1)

w{x‘ylzqr'] =+EIILF I:‘-ll
| (2q)"

Because = —E'. the equation turns into
']

b

J_ GERE ]

wri{x, vzt = —&
| (2a)"

In fact, now that the right side of the equation is in terms of the radius vector
r, you can make the left side match:

1 Ak

(2]

wirt)=

That's the solution to the Schridinger equation, but it's unphysical {as |
discuss for the one-dimensional Schrodinger equation for a free particle in
Chapter 3}, Why? Trying to normalize this equation in three dimensions, for
exarnple, ives vou the following, where C is a constant:
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.| L

Figura T-2:

A box

patential

in30.
— ¥

Inside the hox, say that Vix, v, 2) = 0, and outside the box, say that ¥Vix v 20 =
=a, 50 yvou have the following:

‘-."[.r.y,z}: O,wherelzx <L 0o vesl  O<z<l,
sa (herwise

Drividing V(v v, 2) into WV, (x), V.03, and V_(z) gives vou

WV [x)= [0, whereO<x <L,
ca ptherwise

WV [ v)= |0 where 0=y <L
o otherwise

o 1-."__[3]: hwhere D=z <L,
s obherwise
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Okay, because the potential goes to infinlty at the walls of the box, the wave
function, yix, v, 2), must go to zero at the walls, 5o that’s your constraint, In
30, the Schradinger equation looks like this in three dimensions;

%?‘w{x.y.z J+¥{ w2 )wlx 2 )=Ewp{x.yz)
Writing this oot gives vou the following:

_r['fr_ e ]d_JWer 2+ ¥ {xyz)wlxyz )= By{xyz]

2m

Take this dimension by dimension, Because the potential is separable, you
can write wix, v, 23 as ywix v 2) = XOW0OZ0E) Inside the box, the potential
equals zero, 80 the Schridinger equation looks like this [or x, v and =

- Em a: A %(x)=EX[x)

L -
= Tm au YI::J"]I_F-?{J"]
o T tg(2)=E.2(2)

The next step is o rewrite these equations in terms of the wave number, k.
_ 2mE
*IE
the following equations:

Because #° , vou can write the Schridinger equations for x, v, and z as

> %x{ﬂ:-rﬁx{:j

t__, %—2?(_;-}:—&3?[;]

o et z)=-n."2 )

179
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Start by taking a look at the equation for x Nu::'-:' vou have something to work
with — a second order differential equation, %:{[I] = -k, ?K{*"]' . Here are
the bwo independent solutions to this equation, where A and B are vek 1o be
determined:

T = A sindky)

(0 = B cos(hy)

it b
50 the general solution of 5. F‘{I] ~k, R‘.r]' is the sum of the last two
equations:

Xix) = A sinlhr) + B oos{ky)

Great. Mow take a look at determining the energy levels.

Determining the energy levels

To be able to determine the energy levels of a particle in a box potential, vou
need an exact value for X0 — not just one of the terms of the constants A
and B, You have to use the boundary conditions to find A and B, What are the
boundary conditicns? The wave function must disappear at the boundaries
of the box, 50

e W) =0
e XL =0
So the fact that wiid) = 0 tells vou right awav that B must be 0, because cos{n

= 1. And the fact that X(L. ) = 0 tells vou that X{0L.J = A sin{k L,) = 0. Because
the sine is 0 when its argument is a multiple of =, this means that

kL =nx n,=123...
hx
kl —L.—I

And because & = EiiE it means that
1

2mE, n ' N
=i n =123

_m Rt

<7 2ml
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That's the energy in the ¥ component of the wave function, corresponding to
the quantum numbers 1, 2, 3, and so on, The total energy of a particle of mass

n et

-, VO
amL° ¥

m inside the box potential is E = E, « B, + E_. Following B =
have this for E, and E.:

rrf.h’,rr’

2L’ n =123..

. owhe n,=123...
T 2ml ¢

E,

S0 the total energy of the particle is E < E, « E, « E., which equals this;

E=

n ke’
2mL *
n kel
Zml. |

= ],1.3..-

=123

+

n “Wx'

W i, =L23...

And there vou have the total energy of a particle in the box potential,

Normalizing the wave function

Mow how about normalizing the wave function wix, v, 207 In the x dimension,
vou have this for the wave equation:

N

Xx)= Asln[ H'HJ

So the wave function is a sine wave, going to zero al x - Fand x = L. You can
also insist that the wave function be normalized, like this:

1= !|K[.~:] e
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By normalizing the wave function, you can sclve far the unknown constant A,
Substituting for X(x) in the equation gives vou the following:

1= Ij'sin‘[”-L” ]c[r

Foo oy _ L,
JlEIII [L—]dr_—

Therefore, 1 .-il? JI sir't"[ E‘LE Jc.!r e oimes I=|.-'-.|‘ ]'1;."; , which means vou

can solve lor A:

Cireat, now vou have the constant A, 50 you can get X(x):

X{x) [Ef”‘]"’mu[”i’f:"] n, =123

&

Mow get yilx, v, 2}, You can divide the wave function into three parts;
wix, ¥, 2) = KOOV E(=)
By analody with X{x), vou can find ¥ {v} and £{z):

?[H:( 2 ] 'sin[”f-"J n =123..
=l .

3[3]=[,%“f|;__ )I'sju[ ”-‘L’Tz ] n =123

Sooywix, v 2) equals the Tollowing:

'fo..v.z}=[ lJﬁl.: ] zsm[ "I'fIJﬂn[ "{f’r ]sin[ S }
no=133..
n,=123..
=123
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AN

— ] |
= WL

The restoring force has the form F, = =k v in one dimension, where &, is
the constant of proportionality between the foree on the particle and the
location of the particle. The potential energy of the particle as a function

of location x is "-’{.\' |= %k,x’ . This is also sometimes written as

1 2ot
Vix)=
f_x]l E.r.rm.l, x
: kS
g
where @, e

In this section, vou take a look at the barmonic escillator in three dimen-
sions. In three dimensions, the potential looks like this:

| I |

"n"[_r.}'-z]=%mm.,’x’+ mow v 4 Szt

2 2
ko
T

' Am
;
ey
g S
e

il =ku’
: A m

Mow that yvou have a form for the potential, you can start talking in terms of
Sehradinger’s equation:

_ 2 z
EL[IE +.-1an EIE:I_ ]l,:-r[x'-'z:la-‘l.-'li.ryz}ur[xyzll Ewlx.y.z)
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Chapter 8

Solving Problems in Three
Dimensions: Spherical
Coordinates

In This Chapter
Problems in spherical coordinates
Free particles in spherical coordinates
square well potentials
Isotropic harmonic oscillators

n your other life as a sea captain-slash-pilot, you're probably pretty

familiar with latitude and lengitude — coordinates that basically name a
couple of angles as measured from the center of the Earth, Put together the
angle east or west, the angle north or south, and the all-important distance
from the center af the Earth, and vou have a vector that gives a good deserip-
tion of location in three dimensions. That vector is part of a spherca! coondi-
e .*:_'.'.:r-e'm.

Mavigators talk more aboot the pair of angles than the distance (“Earth’s sur-
[ace” is generally specific enough for them), but gquantum physicists find both
angles and radivs length important. 3ome 30 quantum physics problems even
allow you to break down a wave function into two parts: an angular part and a
radial part.

In this chapter, | discuss three-dimensional problems that are best handled
using spherical coordinates, (For 31 problems that work better in rectangu-
lar coondinate systems, see Chapter 7.)
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A New Angle: Choosing Spherical
Coordinates Instead of Rectangular

Say vou have a 3D box potential, and suppose that the potential well that the
particle is trapped in looks like this, which is suited to working with rectangu-
lar coordinates:

, 0, where < x<L  O<y<L  O=zz<L,
‘n-[.r,y.z]: )
oo ofherwise

Because vou can easily break this potential down in the x v, and 2 directions,
vou can break the wave function down that way, too, as vou see here;

yiy, ¥ 2= X Eiz)

Solving for the wave function gives vou the following normalized resylt in
rectangular coordinates;

wix.yz) =[ L.LEILE ]ﬂ E_|n[r.|,:'1r.1rj'| sin{”’xﬂﬁin (mrz|

L. L. L,
n,=123..
N -
n. =123,

The energy levels also break down into separate contributions from all thres
rectangular axes:

E=E, +E +E,

And solving for E gives vou this equation (Irom Chapter V)

F =
C - .
’:‘E- th* m, =123,
m "
nhi?
T n =123
2mL ¢ v
n_ kit
: no=123.

2mL
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But what if the polential well a particle is trapped in has spherical svmmetry,
not rectangular? For example, what if the potential well were to look like this,
where ris the radius of the particle’s location with respect to the origin and
where a Is a constant?

0 where D=zr <

Viri=
[r] e ptherwise

Clearly, tryving to stull thiz kind of problem into a rectangular-<coordinates
kind of solution is only asking for trouble, hecause although you can do i, it
involves lots of sines and cosines and results in & pretty complex solition, A
much better tactic ks to solve this kind of a problem in the natural coordinate
system in which the potential Is expressed: spherical coordinates,

Figure &1 shows the spherical coordinate svstem along with the corresponc-
ing rectangular coordinates, x, v, and z. In the spherical coordinate system,
wou locabe points with a radius vector named », which has three components:

¥ An roomponent (the length of the radius veclar)
# & (the angle from 2 axis to the the rvector)
= ¢ (the angle from the x axis to the the r vector)

_—

Figure &-1;
Tha
sphancal
coordinate
sysiam,
EEEE——— ¥
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Taking a Good Look at Central
Potentials in 3D

This chapter facuses on problems that invalve cemdrnd potentiols — that is,
spherically svmmetrical potentials, of the kind where Vie) = Ve, In other
words, the potential is independent of the vector nabure of the radius vector;
the potential depends on only the magnitude of vector r (which is ), not on
the angle of

When vou work on problems that have a central potential, vou're able to
separate the wave functlon into a radial part (which depends on the form of
the potentialy and an angular part, which is a spherical harmonic, Read on.

Breaking down the Schridinger equation

The Schridinger equation looks like this in three dimensions, where A is the
Laplacian operator (see Chapter 2 lor more on operators):

S (r) s V{r)w(r) = Ey(r]

And the Laplacian operator looks like this in rectangular coordinates:
- L L
oy’ EI;I-' azt

In spherical coordinates, it's a little messy, but vou can simplify later. Check
out the spherical Laplacian operator:

1 o 1 [
L T
F rJ.r’r fir?

Here, L' is the square of the orbital angular momentum:

: B [ I 1 &
Lo [sjnﬂaﬂ(wm&ﬂ)l sin' @ Eh-:r‘]
Soin spherical coordinates, the Schrédinger equation for a central potential

looks like this when vou substitute in the terms:

L)+ g liy(r) V(e ) =By (r)
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Take a look at the preceding equation, The fiest term actually corresponds o
the riodia! Rinetic energy — that is, the kinetic energy of the particle moving
in the radial direction. The second term corresponds to the mfalional kinelic
energy. And the third term corresponds to the pofentiol 2nergy.

So what can you say about the solutions to this version of the Schrddinger
equation? You can note that the first term depends only on r, as does the
third, and that the gecond term depends only on angles. So vou can break
the wave function, yir) = ywir 8, ¢, inlo two parts:

e A radial part
= A part that depends on the angles

This is a special property of problems with central potentials.

The angular part of y (v, 0, ¢)

When you have a central potential, what can you say about the angular part
of wir 8, §17 The angular part must be an eigenfunction of L', and as | show in
Chapter 5, the elgenfunctions of L™ are the spherical harmonics, ¥, (8, 4 (where
{ |5 the total angular momenium quanium nomber and m s the 2 component of
the angular momentum’s quantum number), The spherlcal harmonkcs equal

20+ 1)1 =m)! )
e | — P, |cosi e here m = 1)
l| |:- ] l q#f"'”r]l ] nh.[ ] wWNEr: 7
Here are the first several normalized spherical harmonics;
Y, (68)=
2 L
| 4z )
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That's what the angular part of the wave function is going to be; a spherical
harmaonic,

The radial part of y (¢, 6, $)

You can give the radial part of the wave function the name B, (r), where n

is a quantum number corvesponding to the guantum state of the radial part

of the wave function and ! is the total angular momentum guantum number.

The radial part is symmetric with respect to angdles, so it can't depend on m,

the quantum nomber of the 2 component of the angular momentom. o other
words, the wave lunction for particles in central potentials looks like the fol-
lowing equation in spherical coondinates:

yilr, &, @) = K (oY (8, b

The next step is ta solve for K, (7) In general, Substituting yir &, 43
from the preceding equation into the S-l:hrﬁdln_tzer equation,

LSy (r)e g Lot (e V(e )y ()= Bar). gives you
LY, [ﬂ¢j|
¥, [8¢]

N F{ jjf_[”‘ ()] 2mr [ Vir)-E]+

Okay, what can you make of this? First, note {Irom Chapter 5) that the spheri-
cal harmonics are eigenfunctions of L° (that’s the whale reason [or using
them), with elgenvalue i« 14"

LY, (e )=11+ 1KY {f0)
So the last term in this equation is simply i(i « 13", That means that

LY, (8]
Y, (6.4

w R.,’:_r]%[f R.{r)J+2mr[v{r)-E]+ili+1)" =0, which equals

s el G )

et jar P IrR,(r)]+2mr[v{r)-E]+ =0 takes the form

The preceding equation is the one you vse 1o determine the radial part of the
wave function, B, (r) [ts called the sodiol eguation for a central potential,
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The way you usually handle this equation is o substitute p for kr, where & -
(2mE, )" /%, so that R.{r) becomes Rike) = R{p). This substitution means that

i 3t [ rRIr ]] M[J'R,,{r]:|=f:[r R‘.[r]l] hecomes the following:

2m ar
CRAp) 2 o) [ ti+)
A

In this section, vou see how the apherical Bessel and Neumann functions
come to the rescue when vou're dealing with free particles.

The spherical Bessel and
Neumann functions
The radial part of the equation. d:H'!:F]_ldH'[PJ+ 1- "[L':I}lﬁ”(p] =0.

dp o dp
looks Lough, but the solutions turn out to be well-known — this equation is
called the sphiencal Bessel equation, and the salution is a combination of the
spherical Bessel functions [yi(p)] and the spherical Neumann functions [mdpl]:

Rilpd = Afdp) + Birdp)

S
/ @ S0 what are the spherical Hessel functions and the spherical Neumann fune-

tinns? The spherical Bessel lunctions are given by

" .
ile)=1-pl [pdp}“:_p
Here's what the first few iterations of j{p} look like;
o fulp)= “;p
e }'.[F}=%—%
o ii(p)-2se 3osp _sinp

How about the spherical Meumann functions? The spherical Neumann func-
tions are given by

n(p)=-(-) [ 1L Je=e
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Here are the first few iterations of miph

o n.{P]l=—t—Lzﬂ

o mp)=- S L

ol )= doosp dsing  cosp
r.: _I':']__ p'l - p.' + .ﬂ

The limits for small and large p

Accarding to the spherical Bessel equation, the radial part of the wave funec-
tion [or a free particle looks like this:

Rilpd = Ajdp) + Bridp)

Take a look at the spherical Bessel functions and Meumann functions for
small and large p:

. I: - 2"I!E'

= Small p: The Bessel unctions reduce to e (20 & )i
(2'+1

—[2n'—]]1.p""

The Meumann functions reduce to a, [p] = 30

[ 1. !
' Large p: The Hessel lunctions reduce to I.{F’}' = EE“'[ & ?I)

The Neumann functions reduce to 7 [F'J = —%Ef‘ﬁ{ (i %; ] .

Mote that the Neumann functions diverge for small p. Therefore, any wave fune-
tion that includes the Menmann functions also diverdges, which is unphysical,
S0 the Nepmann functions aren’t acceptable functions in the wave function.

That means the wave hanction yir, 8, &3, which equals B, (rd Y08, ¢, equals
the following:

yir, &, 0) = flke) Y., (8, €)

where k = (2mFE,}""/k. Note that because ¥ can take any value, the energy
levels are continuous,
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Handling the Spherical
Square Well Potential

Take a look at a spherical sguare well potential of the kind vou can see in
Figure 82 {1 introduce square wells in Chapler 33, This potential traps particles
inside it. Mathematically, you can express the square well pobential like this:

=W
‘l"l:fjl= swhereDaraa

0, wherer =a

—
Fiure &-2;
The
sphencal
sipuare wl
patential,

— Y

Mote that this potential is spherically symmetric and varies only in r, not in 8@
or ¢ You're dealing with a central potential, so you can brieak the wave func-
tion inko an angular part and a radial part (see the earlier section “Taking a
Good Look at Central Potentials in 3077,

This section has vou take a look at the radial equation, handling the two
cases of 0 < r=aand r= a separately,
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Inside the square well: 0 < r < a

For a spherical square well potential, here's what the radial equation looks
like for the region 0 < r < a

%;— rk [r}]+

In this region, Vi) = -V, so you have

El'nﬂﬂ.r[ rR, [rj]_l_tf |I['!IEm.r}l ][rH,,[r]-J=E[rR“{r]j

Taking the ¥V, term over Lo the right gives you the following:
b f+1)0° _— . :
S LR, {r)]+ W[r R.(r}]=(E+V,)r R {r]

And here's what dividing by r gives you:

LRl U g )= (B v, R ()

—ht1
dm oy 2y

Then, multiplying by <2m/f°, vou get

()] U ()= - 2m (v, ()

r d'.l

Mow make the change of variable p = kr. where k = (2miE V0" /b, s0
that R ,-[r‘_l hemm g5 R{&r) = Ki(p) Using this substitution means that
Vi r)= wwherell<rea

i, where.l = I

d'R(p] pdR[p) | t1+1) i
[] o lH.I{p}_D

takes the following [orm:

dp’ o dp

This is the spherical Hessel equation (just as yvou see for the free particle in
"Handling Free Particles in 30 with Spherical Coordinates™). This time, & =
[2e(E +¥, 005, not {2mE) */m. That makes sense, becanse now the particle
is trapped in the square well, 50 its total energy is E + V,, not just E.
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'R (p] ok (p) *[]_ n'[.H‘-]J'I R,{p)=0

dpt p dp (=8

The solation is a combination of spherical Bessel functions and spherical
Menamann functions, where B, is a constant;

Rip} = BiLilp} + nfpl]

5o the radial solution oulside the square well locks like this, where .. -
n2mEY " /h:

Vo B0 =B [ P )+ 1 P | Y (810)

From the preceding section, vou know that the wave function inside the
suare well is

Wonlrto)=Ag (o L 1Y (0]

5o how do vou find the constants A; and B,? You find those constants through
continuity constraints: At the inside/outside boundary, where r= a, the wave
functicn and its first derivative must be continuous. 50 to determine A; and
B, vou have to solve these two equations:

b W () = v (o)

- % "I'r!r\-rl-' II'FE"'?,:I| T 1= %I}ﬁ'“"rt‘l".ﬂ.lﬁ]

Getting the Goods on Isotropic
Harmonic Oscillators

This section takes a look at spherically symmetric harmonic oscillators in
three dimensions. In one dimension, you write the harmonic ascillator poten-
tial like this:

1

vix)= Emm’x’

where o' = % (here, & is the spring constant; that is, the restoring force of the

harmonic oscillator is F = <k, You can tum these two equations into three-
dimensional versions of the harmonic potential by replacing v with e
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Vi) 1 mr’

where @ = Ti . Because this potential is spherically symmetric, the wave

function is going to be of the following form;

w{r fo)= R_‘.[J"}Th{ﬂ,[ﬂ]

where vou have yvet Lo solve for the radial function B, (r) and where Y, (0, )
describes the spherical harmonics,

The Schrodinger equation looks like this in three dimensions;

RO v G [ e )

Substituting for Vir) from "-’[J'] = %mm’r" gives vou the fallowing:
_at gt . RS
%;—[r H_I_J'}]+[Elmm‘r' R — } -‘[r R,|r ]] ]-_[r R, {r ”

Well, the solation to this equation is pretty difficult to obtain, and you're not
going to gain anyvthing by going throuwgh the math {pages and pages of it), so
here's the solution:

Rubr)=c IERP[_"”’JI]' " :]["TNIT:]

where exp(x) = " and
1

:,_n-:'.r:-am""
h } [n—!],[nll’].
, L=
ot 2 2
1
[I:.rT+ f+ 1]!]'
And the L,°(r) lunctions are the generalized Laguerre polynomials:

II]—r'IEth_1{e'r !



Chapter 8: Solving Prohlems in Three Dimensions: Spherical Coordinates 2 03

Wonw, Aren't vou glad you didn’t slog through the math? Here are the Tirst few
generalized Laguerre polvnomials:

e L )=1
o L,"Ifrtl: =r4+h+]

o '-=°[f}=%—{a+zp+w§ﬂ
o L=“[f}=_Tf-{b+;]’J -“”’2}"[?”*3% _ lfb+1]{t-52}[:-+:;]

All right, you have the form for B, (r). To find the complete wave function,
uln 880 vou multiply by the spherical harmonics, ¥, (8, 6}

W [.rHJdr R YL )

Mow take a look at the first few wave functions for the sotropic harmonie
oscillator in spherical coordinates:

b W | B | = %[%Tﬂp( mm—]‘f Jeg)

D_...-||:-I,,_,|:J',|£:|.|:a-]| I‘d} —[:mlrrm)Ircw[—mmg;]"t’_,.[ﬁ'.ﬁ}

3
p..-'t.!-fd,.[i-‘llli'-an]— ] [ ][dJF m"'r':"' ]&:-:p[—mmzh] nry

Hé]"
|

R--I

b Wanlr8.0) = '[TNJ-" ﬂn[ —meg jl‘f'h[ﬁ‘-#}'

As vou can see, when you have a potential that depends on £, as with har-
monic oscillators, the wave function gets pretty complex pretty fast

The energy of an isotropic 30 harmonic oscillator Is quantized, and you can
derive the following relation for the energy levels;

E, =[n+%]hm =123,

5o the energy levels start at 3heo/2 and then go to Sho2, The'2, and s0 on.,
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Chapter9
Understanding Hydrogen Atoms

In This Chapter
The Schrédinger equation for hydrogen

The radial wave functions
Energy degeneracy
Location of the electron

Na:rt oily is hydrogen the most common element in the universe, but it's
also the simplest. And one thing quantum physics is gocd at s predict-
ing evervthing abouwt simple atoms. This chapter is all about the hydrogen
atom and solving the Schridinger equation to find the energy levels of the
hydrogen atom. For such a small little guy, the hvdroden atom can whip up a
lot of math — and | sobee that math in this chapter.

Using the Schridinger equation tells you just about all vou need to kiow
abowut the hydrogen atom, and it's all based on a single assumption: that the
wave function must go to zero as rgoes to infinity, which is what makes solv-
ing the Schridinger equation possible, [ start by introducing the Schrddinger
equation for the hydrogen atom and take vou through calculating energy
degeneracy and liguring out how far the electron is from the proton.

Coming to Terms: The Schridinger
Equation for the Hydrogen Atom

Hydrogen atoms are composed of a single proton, around which rotates a
single electron. You can see how that looks in Figure 9-1.

Mote that the proton isn't at the exact center of the atom — the center of mass
is at the exact center, In fact, the proton is at a radius of r, from the exact
center, and the electron is at a radivus of r.
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. Elactron

Sowhat does the Schradinger equation, which will give you the wave equations
v eed, look like? Well, it inclsdes terms for the kinetic and potential enengy of
the proton and the electron, Here’s the term for the proton’s kinetic energy;

=h" 2
WV
2m_

-Eli-} + E;f + &2 7 - Here, x, is the proton’s x position, v, is the

"

where V.7 =

B

proton’s v position, and z,, is its = position,

The Schridinger equation alse Includes a term for the electron’s kinetic energy:

AT
2m_
where ¥ * = ‘T"i,— g, .a} . Here, x, is the electron’s x position, ¥, is the
Toaet oy dz” o e

electron’s v position, and z_ s 115 = position,
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Simplifying and Splitting the
Schridinger Equation for Hydrogen

Here's the usoal guantum mechanical Sehriodinger eguation for the hydrogen
alom:

i":?*‘w{r,_,r,.}l %?r-‘.‘g[r,.rl_jl £ wlr.r )= Eylr.r)

r —r_l

d

The problem is that vou're taking into account the distance the proton is
from the center of mass of the atom, so the math is messy. I vou were to
asgume that the proton is stationary and that v, = 0, this equation woukl
break down to the following, which is much easier to solve:

=k £

T, V¥In ) yv(n) =Bu(r)

Unfortunately, that equation isn't exact because it ignores the movement of
the proten, $o you see the more-complete version of the equation in guantum
mechanics Lexts,

To simplify the usual 3chrbdinger eguation, you switch to center-of-mass coor-
dinates, The center of mass of the proton/electron svstem is at this location:
mr +mF,

R =
m_+m,

And the vector between the electron and proton s
F=r,—F

Lsing vectors R and rinstead of ¢, and », makes the Schradinger equation

easier 1o solve, The Laplacian for Ris V' = ﬂaT + ;'T + % And the Laplacian
at a? ot )

for ris ¥V ° a;i ;-El_lp'_" ¢ 327

How can you relate V' and V' 1o the usval equation’s V_° and V"7 After
the algebra settles, vou get

1 2 1 :_ 1 z, 1 z
—¥ — v i1V —-¥
m, +m|_ L +m d
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Well, well, well, This equation has terms that depend on either w(R) or wir)
but not both, That means you can separate this equation into fwo equations,
like this (where the total energy, E, equals Eg + E):

—n’ ' -~
ﬁ i:i]'?n W[R]—E.
Em'ﬂ'{ 'i'*u.r[r]- —[_L
I'l.l1ult||znll.r|nLh

I'R]? « W R|=E, by w(R) gives you

oo Vo w(R) =Egw(R]

And multiplying 2 }‘-? wir] —'E—l E, by wir) gives vou

I
S, ()= £ |-.a[ rj=Ew(r]

MNow yvou have two Schridinger equations. The next two sections show you
how to solve them independently.

Solving for v (R)

In E—ﬂ?.’w{ﬂj = Egw|R ). how do you solve [or w(R), which is the wave

function of the center of mass of the electron/proton system? This is a
straightforward differential equation, and the salution is

wiR)=Ce™

Here, C is a constant and k is the wave vector, where |k 2MEy

n.l
find C bv insisting that yw(R) be normalized, which means that

CYou can

!=Iw[R]w'[R]d'R

This equation tells you that C= - . Therefore,

[:-I:-z}-'

v(R}=—=

(2]
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In practice, E; is 5o small that people almost abways just ignore @R} — that is,

éill,f"_ Y they azsume it to he 1 In other words, the real action is in y{#), not iny(R); yiB)
ﬁ I
l'-""\-\. -\_J‘J

is the wave function for the center of mass of the hydrogen atom, and ywi{#) is the
wave lunetion for a (fictitious) particle of mass m.

Solving for vy (r)

The Schrddinger equation for yi(r) s the wave function for a made-up particle of
mass m (in practice, m = m, and w(#) is pretty close o yi{F ) 50 the enerey, B, is
pretty close to the electron's eneriy), Here's the Schridinger equation for gr:

(SRR
.-Em ¥,y }—lel_*']- Ewir)
You can break the solution, w(F), into a radial part and an angular part (see
Chapter 8}

wir) = B, (8, 4)

The angular part of yi{r) Is made up of spherical harmonics, ¥ (68, 40, 50 that
part’s okay, Mow vou have to solve for the radial part, R, Here's what the
Schridinger equation becomes for the radkal part:

e et

T SrR ()-SR (r)=ErR,[r)

where = l#l, To sobve this equation, vou take a look at two cases — where
ris very small and where v is very large. Putting them together gives vou the
rough form of the solution.

Solving the radial Schridinger equation
for small r

For small r, the radial wave [uncticn must vanish, and vou have

% d’ [f nd.[.r]]+.l[:+|}

[ 1
z sl )0

And multiplying by 2m/ii, vou get

d

_dt i I
dril.r R,I{r]J [ i"l".“llf ]
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The soluticn to this equation ks proportional to
Roir) - '« Bp
Mote, however, that B () must vanish as r ijoes to zero — hut the r* ! term

goes to Infinity, And that means that B must be zero, so you have this solution
Far simall -

R.l.'.{r :I = I

That takes care of small v The next section takes a look at very large r

Solving the radial Schridinger equation
for large ¥

. —h? + : 1 .
For very larde r, ﬁ""’,".”[f}— r?lw[rj = E-,I.P'lll‘:l hecomes

0

r .
:fr_l-'l H..{"J]"‘ E;:—ZEI' H__[,.-}

Becanzse the electron is in a bound state in the hwdrogen atom, E < (0 thus,
the solution to the preceding eguation is proportional to

R,.ll{:r:l ‘-AE'-;I‘I- BI':"'JJ

Note that K {r) - Ae™ + He™ diverges as r goes to infinity because of the Be'"
bernn, 50 B must be egual to zerc. That means that B, {r) ~ ¢, In the next sec-
tion, you put the solutions for small rand large r together.

Vou got the power: Putting together
the solution for the radial equation

Putting todether the salutions for small rand larde r{see the preceding sec-
tions ), the Schrddinger equation gives vou a solution to the radial Schrédinger

erquation of B {r) = .l"f{rje'“;". where Hr) is some as-yet-undetermined function
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This equation gives the recurrence relation of the infinite series,
E[ k(fe+ 201 ja,rt” +2(%‘r — Al k4141 ]]q,r* 'J= {i. That is, if you have
&1 |

one cocfficient, vou can get the next one using this equation. What does that
buv vou? Well, take a look at the ratio of a,fea._

i_ﬂ[’”""'” n:ﬁ-]
a,,  k{k+20+1)

Hiere's what this ratio approaches as & goes ta =

i
“n'l_"_',ﬂ
= ap i

This resembles the expansion for ¢, which is

e
= Ear
As lor e, the ratio of successive terms is

(2x)" (k-1

B (2x)

i . ‘ 2
And in the limit & — ==, the expansion for @ approaches e

(2x) (R-1)t 4 .
k’! {E__,l.]” — I!-:' — =
That's the case for €. For (), vou have

4, 24
lim = — ==

el

Comparing these two equations, it's apparent that

iIIr]:Ea,r’ =g
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For this serles to terminate, gx, 1. . 3y and 50 on must all be zero, The
recurrence relation for the coefficients a, is

klk+20+1)a, =2[}.{k+.l']—”;“—;:]u. :
I

For iy, , to be zero, the factor multiplving a,,; must be zevo for & =N+ 1,
which means that

z[amn}_ﬂ"%i]:u
Substituting in & = N + 1 gives you E[A[ N+i{+1)=- mﬂ—ei =1, And dividing by

me’

2 Fives you }LI{N +1+ ]:I = {I. Making the substitution ¥ < !+ 1 —= n. where

i is called the principal gisaatim mumber, gives vou

ni-f5-=0 n=123..

This is the quantization condition that must be met if the series for fi(r) Is to
be finite, which it must be, physically:

E[r}:Z:l:r.r'

e

1
—2mk |* H
u . the equation il - e =0 puts constraints

A
om the allowable values of the energy.

Because 4 =

Finding the allowed energies
of the hydrogen atom

The quartization condition for ywir} to remain finite as r goes bo infiniby is

:E
nA-%:[r n=123..
T

f—EmE.:I.’
f
gives you the following:

where 1= - Substituting & into the quantization-condition equation
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Getting the form of the radial solution
of the Schridinger equation

In this section, vou complete the caleulation of the wave functions, Go to the
caleulation of B, (r) (see the earlier section titled “You dot the power: Putting
together the solution for the radial equation”). So far, vou know that

R, (r}=rlr}e ", where fir)= iﬂ.u"' . Therefore,
5]

. %
R_[r}l:r’e "Eu*r'

In Fact, this isn't quite enough; the preceding equation comes from solving
the radial 3chradinger equation:

IR (rhet(1 1) R (- Er Ru(r) = Er R, (r)

2 o’ 2mr’ r
The solution is only good to a multiplicative constant, so you add such a con-

stant, A (which turns outl to depend on the principal guantam number i and
the angular momentum quantum numbear [, Hke this:

R, ir|= .-\,,r'e""iﬁ,,r"

You find A, by normalizing B, {r).
Wow try to sobve for B, {r) by just flat-out doing the math, For example, tey to

find Ky(r). Im this case, n = 1 and =41, Then, because M « { + 1 = a, vou have
M=n—=0=1 50N =10 here. That makes B, (r} look like this:

H,,{r]:.-!l.,,r"r-_' "ia,r'

ol
Amnd the summation in this equation is equal to Eu,,r" =4l , 50
L |
R.rl=Ar'e"a,

(-2mE)?

And because [ =0, ¢ = 1, 50 R, () = Ae™" @, where 1= -

vou can also write B () = A2, as

. Therefors,

R.fr}= A:,,u:-:p[ =r }LI._

i,
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where r; is the Bohr radivus. To find A, and g, you normalize gy &, ) to
1, which means integrating |yr(r 8, ¢-JI ‘f 'r over all space and setting the
result to 1.

Mow d'r = ¢ siné dr g d, and Integrating the spherical harmonics, such as
Yoo owver a complete sphere, jl-hrml" sinBd@dp, gives vou 1. Therefore, vou're

lett with the radial part to normalize:
1= [ R, {r)| o

Plugging R, (r|= A,,_ﬂ:p{ ;TF J.:.l, into 1= _[r’ |R...|:-l'::l|- dr gives you

1=A,a,’ Ifﬂﬂp[ nf']

You can solve this kind of integral with the following relation:

[ xexp| ax ot = T

With this relalion, the egualion 1= A...‘E{'J‘f:‘-""-ll[ :,.!:

]n'.r becomes

2 2 Fy
l=A, "’ J-rﬂp[ r]n‘r A "T

Therelore,
]
A Ca =1
Kl ul 4
A et = 4
(1] ] r."\.
"ﬁ|'l'lr'r EI
A

This is a fairly simple result. Because A is just there to normalize the resualt,

you can sel A, 1o 1 (this wouldn't be the case il ﬂ.,.’n,’% =1 involved

multiple terms). Therefare, o, = A, . That's fine, and it makes K,,(r), which is
e

HI,[r]=AI,Em[%Ja,
2

Rr:ll:]":|=_:|":"l-u
r?
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You know that w05 8 4) = B(r Y, (8 6.
And 0 gl 8 40 becomes

Wl r B8] = '2:1* g Yo l8¢]

Whew, In general, here's what the wave function g, (n 8, ) Iooks like for
b rosgiea:

v (r.0.) (“i]-[{rr_!_mjie-'..[z_r}'L....""[z_r]v_,.,[a.w]'

' [En{n 4 l::'[]f' o el

where '|."_,_|'I|I'.'l::2|",l'|'i'ri|'] i5 a generalized Laguerre polynomial, Here are the first
Few teneralized Lasuerre polynomials:

e L = 1
= |_-|b{.l":l=—i"+-ﬁ+ 1

e L‘_I-{r]=—Tﬁ_ib+2]r_fb+2¥b+|.:l
L= _T,»_ | b +2:;]r= +{|'3+!J'I|:24':r+:i}r +(_r:-+1]{h;2}[h+:i}

Some hydrogen wave functions

5o what do the hydrogen wave functions ook like? In the preceding section,
s [ined that yaair 8, ¢ looks like this:

Wil r.8.0)= e Y, [0.0)

4
¥ i

Here are some other hydrogen wave himctions:

o ()= —Lre” V. 0.0)

E‘F’_,z

e Il“"rh-[‘r'ﬁll*::l _|1_ 1 ::.-:_F & E:u'll:r._.._ [Eud'":l
Bip, =
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o ur“.[l'-ﬂ.ﬂ:j{Tz];e’:,,[l-

b w.=_[r.ﬂ,¢}=ﬁe':..3—’;[1—[&]]?...{9-@5]

4 [
W rBe) s ——s e ™ Y, (66
) a{30) r,z )

Mote that w, . (r 8, &) behaves like ¥ for small rand therefore does to zero,
And for larde r, w . dF 8, 0 decavs exponentially to zero, 3o vou've solved the
problem you had earlier of the wave function diverging as » becomes large —
ancd all becawse of the quantization conditicn, which cut the expression for
[(ry [rom an exponent to a polynomial of limited order. Not bad.

You can see the radial wave function B,,(#) in Figure 92, B, 0r) appears in
Figure 2-3, And vou can see B, () In Figure 34,

Alr)

I
Figure 3-2; -
The racizl ——
Wwave _

functian
R..An.
]

221
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Rylr}

=
"y

Figure 3-3; \"

Rl —
|
At
/ T
I I|I -\--\-H-\""-\--_\_\_\__
Figure 3-4; f TTT———
Ry 1.

Calculating the Energy Degeneracy
of the Hydrogen Atom

Each quantum state of the hydrogen atem is specifled with three quantum
numhbers: n (the principal quantum number), § (the angtular momentum

guantum number of the electrond, and m (the z component of the electron’s
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Quantum states: Adding a little spin
You may be asking vourseli — what abouwt the spin of the electron? Right vou
are! The apin of the electron does provide additional quantum states. Up to

now in this section, youve been treating the wave function of the hivdrogen
atom as a prodoct of radial and angular parts;

1'Pnl.l\.1{rl El 1:'.] = Rll[r}?ﬁul:e' '1:'}

MNow you can add a spin part, corresponding to the spin of the electron,
where 5 is the spin of the electron and m, is the 2 component of the spin:

|s,.m, )

The spin part of the equation can take the following valoes:

B e P
il PR

Hence, y,..(r 0, §) now becomes ..., (v, 8, ¢):

W (100} = R (1 )Y, (80 )[5.0m,)

And this wave lunction can take two different forms, depending on i,
like this:

oy, (rss)=R, (). (06)3.3)
o v (rs08)=R. (Y. (00) -

In fact, vou can use the spin notation (which you use in Chapter &), where

hl—
h..l-—-

|:‘~.:-|-—-
ﬁ.'-'l
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For example, for [/, 7=, vou can write the wave functicon as

vy ro)=R Y. (0]}

Y
i

And for /s, ==, you ean write the wave function as
]

v (ros)=R.(r)¥.(6.0) M

u

Vol 1,08}

What does this do to the energy degeneracy? If vou include the spin of the
electron, there are two spin states for every state |n, | m=, 50 the degeneracy
becomes

Degeneracy = 22{2!—1]: n’

So i yow include the electron’s spin, the energy degeneracy of the hydrogen
miom is 2n°,

In fact, vou can even add the spin of the proton to the wave funckion
{although people don't usually do that, becanse the proton’s spin interacks
cnly weakly with magnetic lields applied to the hydrogen atom). [n that case,
vou have a wave unction that looks like the following:

sﬂ.m,‘,l.-

T fr,H, ¢-:| =R, [r}‘h"h (&, I| 5,00 b

where 5 i5 the spin of the electron, m_, is the = component of the electron’s spin,
5, 15 the spin of the proton, and m, is the z component of the proton's spin,
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If yvou include the proton's spin, the wave function can now take four different
forms, depending on m,, like this:

o wm!Jl:r,E.w]=R_[r}‘&’hfﬂ_ﬂ]Il‘L}HIEl":,

# v (o) Ralr (ool )
2 Ve ylr00)=R.r)Y ﬂ¢]|‘ -5l

_ I. 1 l'.
b wn. .Ie L{r'{}’ﬁl] Hr\-[r} H{ﬁ"ﬁ] 2 2{
The degeneracy must now include the proton’s spin, 5o that’s a factor of four
[or each I, § m=:

Degeneracy = 24{E{+ 1)
)

=4n’

On the lines: Getting the orbitals

When you study heated hydrogen in spectroscopy, you £el a spectrum con-
sisting of various lines, named the s (for shapd, g Jor privcipal), d (Tor dif
e, and Fifor fundamertall lines. And other, unnamed lines are present as
well — the g b and 50 on.

The s p, d £ and the rest of the lines turn out to correspond to different
angdular momentum states of the electron, called orbitols. The s state corre-
sponds to ! = () the p state, to ! = 1; the d state, to { = 2; the fstate, to /= 3, and
50 on. Each of these angular momentum states has a differently shaped elec-
tron clowd around the proton — that is, a different orlital

Three guantum numbers — i, I and m — determine orbitals. For example,
the electron cloud for the |1, 0, 0= state (15, with @ - 0) appears in Figure 95,
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|
Figure 3-5;
The [1,0, =
staie,
|

The 14, 3, 2= state (4F with & = 2) appears in Figure 9-6.

]
Figure 3-6:
The 4,3, 2>
state.
I
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And because w L 0n 8, &) = B(r)Y,, 08, o), this equation becomes the
following:

_:[|R,.': r]\r‘*'[ﬂ-ﬁ'jl}ﬂ“ﬂ dazjd.;, i

The preceding equation is equal to

|R",{r]|’r=drf Y,.(8.¢)[ sine de:_quﬁ

ar|Ru(r ]|".r=.;frj"'r',; [0 )Y,.(0.8)sinG dﬂ[ i

Spherical harmonics are normalized, so this just becomes
IR, (7} 8 el

Dkay, that’s the probability that the electron s inside the spherical shell
from rio o+ dr. 5o the expectation value of r, which is <r-, is

(ry= j:r'|R‘.|:r:||J.:'.fr
which is
(ri= j:r': |H|‘{r]|;r’dr

This is where things get more complex, hecause K 4} involves the Laguerre
polynomials. But after a bot of math, here’s what you get:

irh= -["‘l“‘f-'[rllsz=[3n= ~H{r=1) )%

F
where r is the Bohr radius: r, = "':'T . The Bohr radius is about 5.25 = 107"

meters, 50 the expectation valee of the electron’s distance from the proton is

ar= = [30° = I + 130265 = 107"y meters
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Handling Many ldentical Particles

In This Chapter
Looking at wave lunctions and Hamiltonians in many-particle systems
Working with identical and distinguishable particles
Identifving and creating symmetric and antisymmetric wave functions
Explaining electron shells and the periodic table

H vdrogen atoms (see Chapler 3) invelve only a proton and an electron,
but all other atoms involve more electrons than that. 5o how do yvou
deal with multiple-electron atoms? For that matter, how do vou deal with
multi-particle systems, such as even a simple gas?

In general, vou can 't deal with problems like this — exactly, anyway. [magine
the complexity of just two electrons moving in a helivm atom — von'd have
to kaber into account the interaction of the electrons not only with the noeleos
of the atom but also with each other — and that depends on their relative
positions. 5o not only does the Hamiltonian hase a term in '/, for the poten-
tial energy of the first electron and '/, for the second electron, but it alse has

1
aterm in |r ’l for the potential energy that comes from the interaction of

the two electrons, And that makes an exact wave function just about impaos-
sible to find,

However, evien without finding exact wave hunctions, you can still do a sur-
prising amount with multi-particle systems, such as deriving the Pali excle
sion principle — which savs, among other things, that no two electrons can
b in the exact same quantum state. n fact, vou'll probably be surprised at
how muoch yvou can actually say about multi-particle systems using quantum
mechanics. This chapter starts with an introduction to many-particle svstems
and goes on to discuss identical particles, symmetry (and anti-svmmeatry),
and electron shells,
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Many-Particle Systems,
Generally Speaking

You can see a multi-particle system in Figure 10-1, where a number of par-
ticles are identified by their position (ignore spin for the moment). This sec-
tion explains how to describe that svstem in quantum physics terms.

Particie {
Farhicla 3
r, rJ
5
— Particle 7
Figure 10-1;
& mulii-
particla
SyEtEm,
|

Considering wave functions
and Hamiltonians

Eagin by working with the wave function. The state of a system with many par-
ticles, as shown in Figure 101, is given by wir, £, @, 2000 And herg‘s the prioba-
bility that particle 1 is in n'3r|, particle 2 is in d'r,, particle 3 is in o'y, and 50 on:

|l,rrfr,.r;.r~-.-.]|:|:|' v 'y,

The normalization of wir. r, r, 0 demands that

_,F|ill".|I FoFLFy. J| rd‘l‘,d"r:d’r._. =1
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Figura 10-2:
& multi-
cleciran

alam,
—

tiectron T

) Wuclous

. Electron ?

Cantar of Mass Electron 2

I your have £ electrons, the wave function looks like yir, v, ..., o R} And the
kinetic enerdy of the electrons and the nucleus loaks like this;

A7

N Veowlrr,. . r, R

KE = . I%?;w[r,rﬂ-.-rﬂﬂ]—

And the potential energy of the system looks like this;

= N e
PE = iul".—ﬂl

S0 adding the two preceding equations, here's what you get for the total
energy (E = KE + PE) of a multi-particle atom:

= s

E\:.l{rl_r__,___r”.ﬂ"] =E%‘Flefr“r;,...l’_,.H}—ﬁ_?;wfrl,r:_._.r‘,-k':l

wlr.r.. r. R

ﬁ’[i’.,f‘l..-.-r__..ﬂ']+z rtrr|

o=l i
- . Lot ] 1 gt )
; v _Rl Hl".-r.-....r,,ﬂ'] i gfl"."‘, I,err,.r,....r,,,ﬂj

Cheay, now that looks like a proper mess, Want to win the Nobel prize in phys-
ics? Just come vp with the general solution to the preceding equation, As s
always the case when vou have a multi-particle system in which the particles
interact with each ofher, vou can't split this equation into & system of N inde-
pendent equations.
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In cases where the N particles of 4 multi-particle svstem don ¥ interact with
each other, where vou can disconnect the Schridinger equation into a set of
N independent equations, solutions may be possihle, But when the particles
interact and the Schridinger equation depends on those interactions, you
can’t solve that equation for any significant nomber of particles.

However, that doesn’t mean all is lost by any means. You can still say plenty
aboul equations like this one if you're clever — and it all starts with an exam-
ination of the symmetry of the situation, which I discuss next.

A Super-Powerful Tool:
Interchange Symmetry

Even thowugh finding general solutions for equations like the one for the total
energy of a multi-particle atom (in the preceding seckion} is impossible, vou
can still see what bappens when vou exchange particles with each other —
and the results are very revealing. This section covers the idea of Interchange
Symmetry.

Order matters: Swapping particles
with the exchange operator

You can determine what happens to the wave function when vou swap two
particles, Whether the wave function is symmetric under such operations
gives vou insight into whether bwo particles can occupy the same guantum
state. This section discusses swapping particles and looking at symmetric
and antisymmetric functions.

Take a look at the general wave function for N particles;

'lp{.l"“ Fin anny r.. S r.l.. S .l"-.,::l

Note: In this chapter, | talk about symmetry in terms of the location coor-
dinate, r, to keep things simple, but you can also consider other quantities,
such as spin, velocity, and so on. That wouldn't make this discussion any
dilferent, because vou can wrap all of a particle’s quantum measurements —
location, velocity, speed, and 0 on — into a single guantum state, which you
can call £. Doing so would make the general wave function for N particles into
this: g, Sa. oo 5o e S o Sl But a5 1 sakd, this section just considers the
wave function wir, &, ... ¥, .0 P vy ) b keep things simple.
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Mow imagine that vou have an exchange operator, P, that exchanges par-
ticles { and § In other words,

F‘_!.'ll.l{rl, Fiw v B vy K s r,_:':l = '|.|.|{rII Fiy v B e B oaeny ""-.}
And Fy=F,, s0

Poplr, r oy v o md =, P, R L F )
=Paplr, r or o r )

Also, note thal applying the exchange operator twice just puls the two
exchanged parlicles back where they were originally, so P = 1. Here's what
that looks like:

P-.- FI_I 1'I'r{rll Fiy e P ooy r.u =ray r‘.‘_} = F._.wl::rl- LRI r_|I ey By vem r\-.l'

= YPF ), By s By ey By oy )

However, in general, Poand Py, (where i = Im) do not commute. That is,
Py By P B (i 2 dov). Theretore, [P, Py 12 0005 2 I, For example, say vou
have four particles whose wave lunction is

‘!"{ b K. . F ] = %Eh

L

Apply the exchange operators Py, and Py, to see whether P; Py, equals
F'H Pl.?' IIE‘FE.'S- PH 1.|.II::I'|. Fz, 1, l"1:|.'

Pllu:"(rpr:_..i".:.ﬂ} = %E':
1

And here's what PP, wir, re, rs, o6 looks like:

5 nr, .,
PI!FIIw[rI'H!'rk'r1 1= _}_'E'
I

Chav, Now take a look at Py, Pre wie, v, e, e Here's Poo wile, v m, mglt

F',_Elp'fr,,r:.rt.r,7:|=:-;_ie"

L

And here's what Py Praowley, w e, rg) looks ke

- 'r-lrl 0

FHFI.'III'II[rHr_-I'-JIn} r [
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! ! ing PP, {rrrr]:r*r’ﬁ'- [ '
As you can see by comparing FoF 80 0,5, F . and this last equation,

PoPoule, v m )2 Py Pagle, B 2. In other words, the order in
which wvon apply exchangde operators maifers.

Classifying symmetric and antisymmetric
wave functions

P, = 1 (see the preceding section), so note that if a wave function is an
elgenfunction of P, then the possible eigenvectors are 1 and =1, That Is,
Fovr wil e, #s, .y Fo wenn ¥y o ) B0 eigenfunciion of P looks like

Poplry, P o By o P PO =R, P L P Py
Or —yir), P, . Py P, Py

That means there are two kinds of eigenfunctions of the exchange operator:

e Symmetric eigenfonctions: Fop e, r., o re o m o i s
Wy, P T L )

= Antisymmetric eigenfunctlons: F,Jul,_frh [T S A

—"-I-'--{"Il Fivar By ovon Fp o r\_'_i

MNow take a look at some symmetric and some antisymmetric eigenfunctions.
How about this one — is it symmetric or antisymmaetric?

wilry, rod = (r - )
You can apply the exchange aperator P.:
Piwilr, v = (n - FI.}:

Mote that because (r = 1) = (k. - r.}”. Wiy, i) s A symmetric wave function,
that's because Py (e, v =y, w L

Heow about this wave function?

‘:;I!‘:rllr._}:_rli-:-_

.[r._—.rzjf

Adtain, apply the exchange operator, P
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J"l.l'u"".[rulr.']=LrI:
[fu-n]
r' r#r’
Ohkay, but hftausef —r} _[r —r] . vou know that P ows(ey, md =y, w2,

S0 yulry, 1) I8 SYMMEeRLric.

Here's another one:

5(r,—r.)
:{r—r H
-
Mo apply Fia:
Sr, —r,
|:'l|""-|:r| r:]_ llr }

F—J"J

How does that equation compare to the original one? Well,
:'.tllrr, r,] i 5{:: |

[r:—u-*l]r - (r=r]

antisymmetric,

o B0 F|'_l U|{_-r|| r_-:l' = _'lih{_r“ I":}. ThE‘t‘Ef-D-I‘E'. |-|-|;||:r|| i"_l} 15

What ahout this one?

l,:-rl{ JF, :|——r'f-—+r +r}

r:-7.)

To find out, apply P,-‘:

|||p"|:r|,r:|— S

r}

All right — how's this compare with the original equation?

rr, r ¥
+r +r' i R i

|_.r —r j [r_!—.r,]-'

(Heay — (e, #) is symmetric,

You may think have this process down pretty well, buk what about this nesxt
wave function?
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F'.F'_. . -
= rl - I"i

{r._"‘:].

I.!!’F{l‘l.ft}=

Start by apphying P .z

Plz'u”-.[rl-rz]= thd 'H-:'I_‘rl=

(r:-nf

5o how do these two equations compare?

i:_‘ + r-'l'? — r-I: : _rnfl_-.rr:'? — rl-:

['rl_r:] ir:_rl}

That s, yslry. v i neither symmetric por antisvmmetric, In other words,
(e, v} is not an eigenfunction of the P, exchange operator,

Floating Cars: Tackling Systems of
Many Distinguishable Particles

All vigght, IF wow've been reading this chapter from the start, vou pretty much have
the idea of swapping particles down, Now vou look at systems of particles that vou
can distinguish — that ks, systems of identifiably different particles, As you ses in
this section, you can decouple such systems into linearly independent equations,

Suppose yvou have a system of many different tvpes of cars floating around in
space. You can distinguish all those cars because they're all different — they
tave different masses, for one thing.

Mow say that each car interacts with its own potential — that is, the potential
that any one car sees doesn’t depend on anv ather car. That means that the
potential lor all cars is just the sum of the individual potentials each car sees,
which looks like this, assuming you have N cars;

PE=V({rrr )= X V(r)

Being able to cut the potential energy up into a sum of independent terms
like this makes life a lot easier. Here's what the Hamilbonian looks like:
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3 : J

But now look at the scenario in Figure 104 — the electrons could've bounced
like that, not like the bounce shown in Figure 10-3, And yvou'd never know it.

S which electron is which? From the experimenter's point of view, you can't
tell. You can place detectors to catch the electrons, but you can’t determine

which of the incoming electrons ended up in which detector, because of the

twao possible scenarios in Figures 103 and 140-4.

Cuantum mechanbcally, identical particles don’ retain their individuality in
terms of any measurable, observahle quantity. You lose the individuality of
identical particles as soon as vou mix them with similar particles, This idea
holds true for any N-particle system, As soon as vou let N identical particles
interact, vou can't say which exact one is &t ry or ey oF & o £y and so on,
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Symmetry and antisymmetry

In practical terms, the lass of individuality amang identical particles means
that the probabkility density remains unchanged when vou exchange particles.
For example, If you were to exchange electron 1281 with electron 58,830,
yaou'd still harve the same probability that an electron would occupy i g gy
arcd rf*r_-,,, D

Here's what this idea looks like mathematically {rand s are the location and
spins of the particles):

PP By, s o P T8 e ) | 2 TS P i T8 P8 i PS)
The preceding equation means that

LT X S R O s (L L T TP N LT N AL Ny

S0 the wave function of a system of M identical particles must be either sym-
metric or antisymmetric when yvou exchange bwo particles. Spin turns out to
b the deciding factor:

# Antisymmetric wave function; If the particles have hall-cdd-integral
spin )y Ye and 0 ond, then this is how the wave lunction looks under
exchange of particles:

WP S, Py oy P8 ey B oy B8] = =008 ), 0280 1, T8 v P8 o 18y

= Symmetrlc wave functon: If the particles have integral spin (0}, 1, and
so on), this is how the wave function looks under exchange of particles:

WIS, P, ooy P8, oy P, o PE) = WPE ), Pl L BS, P Py

Having symmetric or antisvmmetric wave functions leads to some different
physical behavior, depending on whether the wave function is symmetric or
antisymmetric.

In particular, particles with integral spin, such as photons or pi mesons, are
called fosons. And particles with half-odd-integral spin, such as electrons, pro-

tong, and neuatrons, are called fermions, The hehavior of systems of fermions is
very different from the behavior of systems of bosons.

Exchange degeneracy: The steady
Hamiltonian

The Hamiltonian, which vou can represent like this

H{r 8 mafey oo P85 e PS5 e M)
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oF

But what if the particle you're studyving is & composite particle? What if, for
example, yvou have an afpha particle, which s made wp of two protons and
two neutrons? Is that a fermion or a boson?

In fact, protons and neotrons themselves are made up of three quarks, and pi
mesons are made up of bwo — and quarks have spin /..

Composites can be elther fermions or bosons — it all depends on whether
the spin of the composite particle ends up being half-pdd-integral or integral.
If the compaosite particle’s spin §s '/, /5, - and 50 on. then the composite
particle is a fermion. If the composite particle’s spin ks 0, 1, 2, and so on, then
the composite particle is a boson,

In deneral, if the composite particle is made up of an odd number of fermions,
then it's a fermion, Chherwise, it's a boson. 5o for example, becawse quarks
are fermions and because noeleons such as protons and neutrons are made
up of three guarks, those nucleons end up being fermions. Bul because pi
mesons are made up of two quarks, they end up being bosons. The alpha
particle, which consists of two protons and two neutrons, is a boson. You can
even consider whole atoms to be composite particles, For example, conskder
the hydrogen atom: That atom is made up of a proton {a fermion) and an elec-
trom Canother fermion), so that’s two fermions, And that makes the hvdrogen
atom a boson,

Building Symmetric and Antisymmetric
Wave Functions

437

Manv of the wave functions that are solutions to phvsical setups like the
sguare well aren’t inherently symmetric or antisvmmetric: they're simply
asvmmeedric. In other words, they have no definite symmetey, 50 how do you
end up with symmetric or antisvmmetric wave functions?

The answer is that you have to create them yourself, and vou do that by
adding together asymmetric wave functions. For example, say that you have
an asvimmetric wave function of two particles, wirs,, rs.

To create a svimmetric wave funclion, add together yirs,, rs.0 and the version
where the two particles are swapped, wirs., r5 0 Assuming that ywirs,, rs,)
and wirs., r50 are normalized, you can creale a symmetric wave function
using these two wave functions this way — just by adding the wave functions:

F.frlﬁl-rﬁ. l| = Tf]IE[ ':""[rl-'-"l-r.*sj ]+ W[rﬁj-r@'.-ﬂ
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And the total epergy is just the sum of the energies of the individual particles;

E=YE

But now look at the wave function for the system. Earlier in the chapter {see
"Floating Cars: Tackling Svstems of Many Distinguishable Particles™), vou
consider the wave function of a system of N distinguishable particles and
come up with the product of all the individual wave functions;

LU [ ﬁ:ﬁ w, (n)

However, that equation doesnt work with identical particles because vou can't
say that particle 1 is in state g (e, particle 2 is in state wole), and 5o on—
they're identical particles here, not distinguishable particles as before.

The other reason this equation deesn't work here is that it has no inherent
symmetry — and systems of M identical particles must have a definite sym-

metry, 5o instead of simply multiplyving the wave functicns, youo have to be a
little more careful,

Wave functions of two-particle systems

How do vou ereate symmetric and antisymmetric wave functions for a two-
particle system? Start with the single-particle wave functions (see the earlier
section *Building Symmetric and Antisymmetric Wave Functions™;

o V. (15,08, ] = ﬁ[ 'F["'r‘u":-": |+ a,!.r[r:sz,rlﬁlj]

> W, (rs.rs. )= ;Ii[w{ﬂs,.r;s;}—{ns;.ns_}]

By analogy, here's the symmetric wave function, this time made up of two
single-particls wave functions:

W rs, s, )= :l,lz[wﬁ (rs, e, (rs, e, (rs, )y, l[r.S-_}]
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And here's the antisymmetric wave function, made up of the two single-parti-
cle wave [unctions:

v, (rs.ns,) ;'E[w..[r.a-.aw,_{r,s,J v, (rs,)w, (rs)]

where n, stands for all the quantum numbers of the ith particle,

MNote in particular that y {r s, r50 = 0 when 7, = &y; in other words, the anti-
symmetric wave function vanishes when the two particles have the same set
of quantum numbers — that is, when they're in the same quantum state. That
idea has important phvsical ramifications.

You can also write w,(r 5, 50 like this, where P is the permutation operator,
which takes the permutation of its argument:

¥ IIJ'I.'E,,r:_i_ ] = ﬁIE-FW |:"-r"-l :l V. [I",_Ez :|

And also note that you can write y,(r s, rs) like this:

B [r,f,.r,sj = ﬁg{— 1:|? P {r,s. }n;.:-',I |Irr,.'.'_.:|

where the term {-1)" Is 1 for even permutations (where vou exchange hoth r 5,
and .5, and also ny and 4.} and -1 for odd permotations (where yvou exchange
e 5 and w5 bt not oy and ;o vou exchange n; and m but not #8, and 5.0,

In fact, people spometimes write w_(#5), £8.) in determinant form like this:

_ IR L T I
W..fr,a,.r,s.]—ﬁst v (rs) . (ns)

Mote that this determinant is zero if 4y = .

Wave functions of three-or-more-particle
systems

Mow yvou get to put together the wave flunction of a system of three particles
from single-particle wave functions.
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The Pouli exclusion principle states that no two electrons can ocoupy the
same rpuantum state inside a sindle atom., And that result s important for the
structure of atoms. Instead of just piling on willy-nilly, electrons have to fill
quantum states that aren't alreacy taken, The same isn't true for bosons — for
example, if vou have a heap of alpha particles (bosons), they can all be in the
same quantum state. Mot so for fermions.

There are various quantum numbers that electrons can take in an atem — a
(the emergy]), [ {the angular momentom), 7 (the z component of the angular
maomentum), and m, (the 2 component of spin}, And using that information,
vou can construct the electron structure of atoms,

Figuring out the Periodic Table

)

"X

Cme of the biggest successes of the Schrddinger equation, together with the
FPauli exclusion principle (see the preceding section), i explaining the elec-
tron structure of atoms.

The electrons inan atom have a shell structure, and they fll that strocture
hased on the Pauli exclusion principle, which maintains that no two electrons
can have the same state;

# The major shells are specified by the principal quantum oomber, #, cor-
responding to the distance of the electron from the nuclews.

= Shells, in turn, bave subshells based on the orbital angular momentum
quantum pumber, [

= In turn, 2ach subshell has subshells — called grbitals — which are based
on the z component of the angular momentum, &

S epch shell i has n - 1 subshells, corresponding to 1 =0, 1,2, .. e -1, And in
turn, £ach subshell has 2 + 1 orbitals, correspondingtom=-1, -+ 1, .., I-11

Much as with the hydrogen atom, the various subshells (=10, 1, 2, 3, 4, and
sooon) are called the s, p, o £ g b, and so on stabes, 2o, for example, for a
given n, an s state has one orbital {m = 00, a p state has three orbitals {m = -1,
0, and 17, a o state has five orbitals (m =<2, =1, 0, 1, and 2}, and s0 on.

In addition, due to the z component of the spin, m, each orbital can contain
twao electrons — one with spin up, and one with spin down,

251
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Perturbation theory lets yvou handle situations like this — as long as the pertur-
bation kst too strong, In other words, If vou apply a weak magnetic Tield to your
known svstem, the energy levels will be mostly unchanged bot with a correc-
tion, {Mele: That’s why it's called pesfarbation theary and not drasiicintederence
theory. ) The change vou make to the setup is slight enoegh so that you can cal-
culate the resulting energy levels and wave functions as coreciions to the funda-
mental energy levels and wave functions of the unperturbed system.

So what does it mean bo talk of perturbations in physics terms? Say that you
have this Hamiltonian:

H=H,+iW [icel]

Here, H, is a known Hamiltenian, with knewn eigenfunctions and cigenvalues,
and AW is the so-called perturbation Hamiltenian, where =<1 indicates that
the perturbation Hamiltonian is small.

Finding the eigenstates of the Hamiltenian in this equation is what solving
prohlems like this is all about — in other words, here’s the prohlem you want
to solve:

Hli'la"-::l=|:HI.‘-.::|.W]|I||:I'__'::-=E__||I|SI"_::I f.ﬂ.-:ﬂn]':l

The way vou solve this equation depends on whether the exact, known solu-
tions of H, are degenerale (that is, several states have the same energy) or
nondegenerate, The next section solves the nondegenerate case,

Working with Perturbations to
Nondegenerate Hamiltonians

Start with the case in which the unperturbed Hamiltonian, H. has nondegen-
endle solutions, That is, for every state ¢ -, there’s exactly one enerigy, E_,
that isn't the same as the energy for any other state: H |, )~ E |#,) (ustasa
cne-lo-one funclion has cnly one x value for anv v). You refer o these nonde-
generate energy levels of the unperturbed Hamiltonian as B to distinguish
them from the corrections that the perturbation introduces, o the equation
becomes

Hlo=E", 8.}

From here on, | refer to the enerdy levels of the perturbed system as E

The idea behind perturbation theory is that yoo can perform expansions
based on the parameter A (which s much, muoch less than 1) o find the wave
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So your task is to calculate E'V and E™ |, as well as " and ¢™ | 5o how do
vou do that in general? Time to start slinging some math, You start with three
perturbed equations:

 Hamiltonian: H|w j={H,+AW]w )=E v} [4=<1]
w Energy levels: E =E" +AE" + B+ [ia=l)
» Wave functions: |1,Lr_,:!=|¢.,:|+.1|l,:-r"_::I+.5.”||,|.r'=_:|+-.. [A==1]
Combine these three equations to get this jumbo equation:
(AW Y [o, )+ Awr™ o+ 22w, )+
=[E"'J+..1E"L+J,"E""_1+...:|{ -;n,:;uhlll,u"'":;-+.-1“||,;r"'..::+...]| {A=<1]

Matching the coefficients
of .. and simplifying

You can handle the jumbe equation in the preceding section by setting the
coefficients of L on either side of the equal sign equal to each other,

Equating the zeroth order terms in & on either side of this equation, here’s
what you get:

H o h=E" g}

Now lor the first-order terms in A, equating them on either side of the jumbo
equation gives you

H,,|I,I|I':""]:-I Wllﬁ'ﬂ}'— ]-'.'".I..|'|5" |-I I EIII- uﬁ‘::

Mow equate the coefficients of &2 in the jumbo equation, giving vou

IFI'-I ":_+ g

l"lI L

H"|I||.l'“'=::l + W|w"'.::| =E"

|,|3"M,.-I:'+ E" I,.

@,

Ckayv, that's the equation vou derive from the second order in &, Mow you
have to solve for EY E® | and so on using the zeroth-order, first-order, and
second-order equations.
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Start by noting that the unperturbed wave function, |§ = isn't going to be
viery different from the perturbed waw. hunction, |y =, because the perturba-
tion is small. That means that I::dr ||,|.r = 1. In fact, you can normalize [y = s0
that =4 |w = is exactly equal to 1:

(o w.)=1

Ciiven that l.l"..:: = |ﬂ..:'+ A I.L""'.l"—'i:|1.l-f'='_,}+- ... the eguation becomes

ﬂ.n,ﬁ |I,y' +A% ||,u" 2 he—o

And because the coeflicients of A must both vanish, vou get the following:

(0ulw, )= (0.l =0

This equation ks useful for simplifving the math,

Finding the first-order corrections

After matching the coefficients of & and simplifving {see the preceding sec-
tiom), you want to find the first-order corrections to the energy levels amd
the wave functions. Find the first-order correction to the enerdy, E' | by

multiplving H |q5r" :|+W|¢:| :|_ E" ||;.r"' ".- A |¢]| by < |-

(8Ll )+ {0 Wio.}= (0. B, ' )+ 0, [E Jo.)

You ean use H|w, b= (H, + AW)|w b= E Jw.) (A=<1) to simplify this to

_Ilu_ll:l+

E“I.-: - {wﬂ|“r|¢ﬂ}

Swell, that's the expression you use for the first-order correction, E7

Mow look into finding the first-order corréction to the wave function, [y =
You can multiply the wave-function equation by this next expression, which
is equal ta 1:

Zftapie.l
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Finding the second-order corrections

Now find the second-order corrections to the energy levels and the wave
functicns (the preceding section covers first-order corrections). T-::n find F =

multiply both sides of H..|4.a-f ~I,|+‘|.'r’| "'.,:!- I:'"'"||,;r'“ '+ E" |||y' _”.+|: .
b e, |

l::I;S',,|IIl w' b |,.p| W', ." =-!:¢L|L-:"",, |l.|r"',.:! +I:n!l-,,|i£' ﬂ",,::'

oo

This looks like a tough equation until vou realize that <d |g'™ = i equal to
Zero, 50 yvou get

(o bl e (o ww™, ) =0 [E", [0, )+ {6 [a,)

And becanse <4 [y = is also equal to zero, vou get

(o, ww™ )= {a,|E",]s.)

E™ is just a number. 0 vou have

" =E {0 |s,)

And of course, because < ¢ » = 1, vou have
= (o [Wlw )
Motbe that if Ty = is an eigenstate of W, the second-order correction equals
zera.
Okay, 50 B = =g Wiyt = How -::nn vou make that simpler? Well,

5 ﬁ_zga |w ¢ﬂ| .

from using ¥ . . Substituting that equation into

B, = ':.I""nl Wy I.:' gives you

v)=(o WZ

[fo-1wlo.)|

ol |

'P*u'

EY _m Wy

0}

&R LE

Es
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. ) |{Ir-n!|rrr| 'l.'n’lr,!rnl,n|
Mow you have B = oW |dl::l and E°, = ‘zw:. ]'___I, e Here's
the total epergy with the first- and second-order corrections:

E" — E'IH._ + .'IE:“'.. "'-'-'riE:I'.I_,*' [';r o ]':I

5o from this equation, you can sav

{o |Wis. A
Eﬂ:E,,+,1{¢,|w|¢_;..a=z%+”. (A<<1)

That gives vou the first- and second-order corrections to the energy, accord-
ing to perturbation theory,

MNote that for this eguation to converie, the term in the summation must
be small, And note in particular what happens to the expansion term i the
criergy levels are degenerate:

(e wie.

In that case, you're going to end up with an E™ that equals an ™, which
means that the energy-corrections eguation blows up, and this approach

to perturbation theory i no good — which is te say that you need a dif-
lerent approach to perturbation theory {coming up later in “Working with
Pertubations to Degenerate Hamiltonians™) 1o handle svstems with degener-
ate energy states,

In the next section, | show you an example to make the idea of perturbing
nondegenerate Hamiltonians more real.

Perturbation Theory to the Test:
Harmonic Oscillators in Electric Fields

Consider the caze in which you have a small particle oscillating in a harmonic
potential, back and forth, as Figure 11-1 shows,
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Figure 11-1;

A harmanic - ’ :
oscillator.,

—
Figure 11-2;
Applymg

an elecknc
field to a
harmanic
ascillator,
—

Here's the Hamiltonian for that particle, where the particle’s mass is m, its
location is x, and the angular frequency of the motion is
I i
H= i d 1

A S metxt

2m dx® 2

Mow assume that the particle is charged, with charge g, and that you apply a
weak electric field, ¢, as Figure 11-2 shows.

€
-
.
=
£
-

The force due to the electrie field in this case is the perturbation, and the
Hamiltomnian becomes
i H
1 = e T S |

1 1.5
= Sy et 3 MK+ gex

In this section, vou find the energy and wave functions of the perturbed
system and compare them to the exact solutions,
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That makes figuring out the second-crder energy a little easier,

Alzo, the following E'Hpresslt:um turn out to hold for a harmonic ascillator;

lr+l } 1
e | rr xln' [ni :I fimm]

o (=1 x[n}=n"" ﬁ

o BV BV = e

o B —E™ = —ha

|H-||I ﬂ:'|

_ E|:||

= -

With these four equations, vou're ready to tackle g7 E' by the

second-order correction to the energy, Omitting hlp,her-pn::wer terms, the
summation in thiz equation becomes

|{fn+]|r|n} :
EI"‘I - EI"I .

[{n=1fx]m)
E l'._ E.Wlﬂ |

Lad

EII.'E.'

And substituting in the for E™ —ET  and EM™ -E™ dives you

-::J'J+I|.1f.l'.|}3
elmnon)
oot

figa

Mow, substituting in for <o + 1y o= and <in— 11 x 0= gives you

[m+1)0
(- ﬁm}[ﬁmm]

{,".n["l W

ﬂ ﬂ

iqE

0
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! 1 L Lk
o L1 x| ) ——
1 | I [ | {Emm] uzl
5 _EI“ |
e (=1 x| =n""——x
I:: | } [EIJ']M]]I 1
Note also that E7 .~ E" = her gpg B —EY = —ha |

These four equations mean that

| |nl:l .f_rr e l::' {rrvl}":rr'l::l]

.I'i'm.lgm } ’

Mote what this equation means: Adding an electric field to a quantum har-
maonic oscillator spreads the wave function of the harmonic oscillator,

Originally, the harmonic oscillator’s wave function is just the standard har-
monic oscillator wave function, ly = = = Applying an electric field spreads
the wave function, adding a component of le — 1=, which is proporfional to
the electric field, &, and the change of the oscillator, g, like this:

'.IJ',.. |J"|‘ _TMW[R |.|'.| 1I|-—..}

And the wave function also spreads to the other adjacent state, n o+ 1x,
like this;
.relfl L i l'II n+ll n+i
) "?f“‘ {Emm} t 1 (ne1) }]

You end up mixing states, That blending between states means that the per-
turbation vou apply must be small with respect to the separation hetween
unperturbed energy states, or vou risk blurring the whole system to the point
that vou can’t make any predictions about what's going to happen,

In any case, that's a nice result — hlending the states in proportion to the
strength of the electrie field you apply — and it's tvpical of the resolt you get
with perturbation theory.

Okayv, that's how nondegenerate perturbation theory works. As vou can see,
it"s strongly dependent on having the energy states separate 5o that vour
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Mow multiplying that equation by <b_ | gives vou
1]

X[ (e, |e" o, )+ (o, |1.]6. }|a, =E.Za.lo. o, }

Lising the fact that <4, |§ = =1 and <p @ > =0if m s not equal to n gives vou
EI|E" = a.'lE'"IIl' + Efﬂ"{'ﬂ'.l |Hr |¢I" ::I
FPhvsicists often write that equation as

E:"cr_,Hl__‘ —{a,E —aEY =0 [f=123_F]

where H_ . <, TH 4§, = And people also write that equation as
I B ° a

ia_,HI,_ —aE" =0 (A=123.7)

where 'Y =E_~FE™  That's a svstem of linear equations, and the solution
exlsts only when the determinant to this array is nonvanishing;

I!I-u - EIII-- Jll‘,.l.l :H',.ll J.I',.lr
I-!r:' I-]l':'ﬂ - E'I.I-'- H.l.'l H-""
H_, H_, H., .. H,-E"

The determinant of this array is an fth degree equation in EY | and it has f
different roots, EY' _Those fdifferent roots are the first-order corrections

ta the Hamiltonian, III.J!:l:laII].-'. those roots are different because of the applied
perturbation, In other words, the perturbation typically gets rid of the
tedeneracy.

5o here's the way you [ind the eigenvalues to the first order — you set up an
Fhy-fmatrix of the perturbation Hamiltonian, H, where H, =<4 [H |9 =
L. H P

uf
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Then diagonalize this matrix and determine the feigenvalues E' ""_J and the
matching elgenvectors:

<l

—a, el 2.3 .8

Then you get the enerey eigenvalues to first order this way:

E_=E" +E", (e=123_.7)

And the eigenvectors are

v )=Zaule.)

In the next section, you look at an example to clarify this idea.

Testing Degenerate Perturbation Theory:
Hydrogen in Electric Fields

In this section, vou see whether degenerate perturbation theory can handle
the hydrogen atom, which has energy states degenerate in different angular
mamentum quantum numbers, when you remove that degeneracy by apply-
ing an electric field, This setup is called the Stark effect.
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Drpving the math gives you this remarkahly simple result:

H_-|II H. H_-I' H..u ﬂ n I {-l
H, H, H, H,. _ _3era, I IV
H. H,. H,, H, 1 o i
H:.'l' H.ll.‘ H.'III H!I-l |:| |:| ﬂ I:h

Diagonalizing this matrix gives vou these eigenvalues — the first-order cor-
rections to the unperturbed enerdies:

w BV = derva

= E! "3 =10

wr EX, = Reeq

w EUL <
where EU s the first-order correction to the energy of the | 1= eigenfunction,
E, i the first-order correction to the energy of the | 2= eigenfunction, and

s on. Adding these corrections to the unperturbed energy for the n = 2 state
gives you the final energy levels:

we B = —E—Eﬂm.

where K is the Bydberg constant. Note this result: The Stark effect removes
the energy degeneracy in 200> and (210= (the [ 1= and | 3> eigenfunctions),
but the degeneracy in 211> and 121 - 1= (the 12> and | 4= gigenfunctions)
remaing.
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Chapter 12

Wham-Blam! Scattering Theory

In This Chapter
Switching between lab and center-of-mass rames
Zolving the Schrédinger equation
Finding the wave function
Putting the Born approsimation to work

our National Science Foundation grant finally came throwgh, and vou

bublt vour new svnchrotron — a particle accelerator. Electrons and
anti-electrons accelerate at near the speed of light along a glant circular track
enclosed ina vacuum chamber and collide, letting vou probe the structure of
the high-energy particles vou create, You're sitting at the console of vour giant
new experiment, watching the lights flashing and the signals on the screens
appravingly. Millions of watts of power course through the thick cables, and
the radiation monitors are beeping, indicating that things are working. Cool.

You're accelerating particles and smashing them against each other to obserye
how thev scatter. But this is slightly more complex than observing how pool
balls collide, Classically, you can predict the exact angle at which colliding
ehjects will bounce off each other if the collision is elastic (that is, momentum
and kinetic energy are both conserved). Quantum mechanically, however, you
can only assign probabilities to the angles at which things scatter,

Physicists use large particle accelerators to discover more about the struc-
ture of matter, and that study is central to modern phasics, This chapter

serves as an introduction to that field of studvy. You get to take a look at par-
ticle scatbering on the subatomic level.

Introducing Particle Scattering
and Cross Sections

Think of a scattering experiment in terms of particles v and paiticles ol
Laok at Figure 12-1, for example. In the Ggure, particles are being sent in a
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—
Figure 12-1:
Seattenng
fram a
targat,
|

stream from the left and interacting with a target; most of them continue on

unscattered, but some particles interact with the target and scatter,

— Particles scattened ot
[, 4l
df » roil
> -
[neidant particles Unscattered particles

Those particles that do scatter do 5o al a particular angle in three dimensions —
that is, you give the scattering angle as a solid angle, &2, which equals sing oo o,
where o and o are the spherical angles | introduce in Chapter 8,

The number of particles scattered into a specific g0 per unit time is propor-
tiomal to a very important quantity in scattering theory: the differential cross
section,
. . o dofe8)
The differentiol cross sechion is given by — and it's a measure of the
numhbsr of particles per second scattered into G0 per incoming flux, The ing-
dent fuy, | {also called the coment densifivy, is the number of incident particles
. - da(p.8)
per unit area per unit Bime. 3o - w0

da| g @) adNia0)
d ] i

where Nid, 8) is the number of particles at angles § and 8.
dal 9.9

Y has the dimensions of area, so calling

The dillerential cross section
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it a cross section is appropriate, The cross section is sort of like the size of
the bull's eve when you're aiming to scatter Incident particles through a
specific solid angle,

o The differentinl cross section ks the cross section for scattering to a specific
solid angle, The toral cross section, @, is the cross section for scattering of any
kind, through any angle, 50 if the differential cross section for scattering to &
particular solid angle is like the bull's eve, the total cross section corresponds
to the whole target.

You can relate the total cross section to the differential cross section by inte-
grating the following:

= LU0 el

Translating between the Center-of-Mass
and Lab Frames

Mow you can starl getting into the details of scattering, beginning with a dis-
cussion of the center-of-mass frame versus the lab frame, Experiments take
place In the fof frmme, but vou do scattering calculations in the centerafmoss
froimie, s0 von have to know how to translate between the two frames, This
section explains how the frames differ and shows you how to relate the scat-
tering angles and cross sections when you change frames,

Framing the scattering discussion

Look at Figure 12-2 — that’s scattering in the lab frame. One particle, travel-
ing at vy, §% incident on another particle that’s at rest (o, = 0 and hits it.
After the collision, the first particle is scattered at angle &, traveling at ¢ fal,
and the other particle is scattered at angle & and velochty .
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¥
I lab
¥ ¥
I lak 2l b
m n
— | 2 |:|1
Figure 12-2:
acattaring Ty
in tha kab 2 lab
irame.
] A B

Mow in the center-ol-mass frame, the center of mass is stationary and the par-
ticles head toward each other, After they collide, they head away from each
other at angles & and m - &,

You lave to move back and lorth belween these bwo Irames — the lab frame

and the center-of-mass frame — $0 vou need 1o relate the velocities and
angles (in a nonrelativistic way).

Relating the scattering angles
between frames

To relate the angles 8, and &, vou start by noting that youn can connect o,
and ¢y, using the velocity of the center of mass, v, this way!

Do = e + By

In addition, here's what can say about the velocity of particle 1 after it col-
lides with particle Z:

”I'l:.-\.l- - l':llu' UL O
Movw yvou can find the components of these velocities:

B op e 0058, = &, CosE - e,

B p' L SINB = ' sind

Dividing the equation in the second bullet by the one in the first gives you
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MNote also that tand8.) = cot(™:), or tan{&) = tan(= =0,

You know that 8, =/, and tan{8:} = tan{™/: = %) tells you that the following is
true:

By ==
S0 substitubing &, = * into the preceding equation gives vou

'El-_. = "III: = |.||
ﬂ-_. + B'_ = ‘lll.'
Therefore, 8, and 8, the angles of the particles in the lab frame after the colli-

sion, add up to v — which means 8, and 8, are at right angles with respect to
each ather. Cool.

In this case, vou can use the relations you've already derived to get these
relations in the speclal case where m, = m..

w%&;ﬂ] =4c‘m{ﬁ,]dﬁigﬂ]
RO
. :f.:i:.m 4 m{ﬁ;}"’“ﬁ"”
| ()

Tracking the Scattering Amplitude
Of Spinless Particles

In the earlier section “Translating between the Center-of-Mass and Lab
Frames,” you see how to translale irom the lab frame to the center-ol-mass
frame and back again, and those translations work classically as well as in
guantum phyvsics (as long as the speads involved are nonrelativistic), Now
vou leok at the elastic scattering of two spinless nonrelativistic particles
from the time-independent quantum physics point of view,

Agsume that the interaction between the particles depends only on their
relative distance, 1r, -l You can reduce prohlems of this kind to two
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decoupled problems (see Chapter 2 for details), The first decoupled equation
treats the center of mass of the two particles as a free particle, and the

mm,
ok,

second equation is for a lictitious particles of mass

The first decoupled equation, the free-particle equation of the center of mass,

is of no interest Lo vou in scattering discussions. The second equation is the
mim

one to concentrate on, where 1 = m ~m, -

SV Virlir)=Ev(r)

You can use the preceding equation to solve for the probahility that & par-
ticle is scattered into a solid angle &0 — and youw give this probability by the

frls)
iff lal jon, 25
differential cross section, X

In quantum physics, wave packets represent particles, In terms of scattering,
these wave packets must be wide encugh so that the spreading that ccours
during the scattering process is negligible (however, the wave packet can't be
s0 spread that it encompasses the whole lab, including the particle detectors).
Here's the crux: After the scattering, the wave function breaks up into two
parts — an unscattered part and a scattered part. That's how scatbering works
in the quantum physics world.

The incident wave function

Assume that the scattering potential ¥Vir) has a very finite range, a. Outside
that range, the wave functions invalved act like free particles. 5o the incident
particle’s wave function, outside the limit of ¥(r) — that is, outside the range
a from the other particle — is given by this eguation, because V{r) is zero:

Vi |r)+kg, (ri=10

where &k, = % .

Fﬂ-
The form V., (r]+ k@ [r)=0 is the equation for a plane wave, so 4,_(#) is
d (= Ae™" where A is a normalization factor and k- v is the dob product
between the incident wave's wave vector and £, In other words, vou're treat-
ing the incident particle as a particle of momentum &9 Rk,
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The scattered wave function

After the scattering of the spinless particles, the nonscattersd wave function
izn't of much interest to you, but the scattered wave function is, Althouggh the
incident wave function has the form &,,.(¥) = Ae™", the scattered wave func-
tion has a slightly different form;

. (r)=Ai{0.0) £

The i, &) part is called the scaftering amplitude, and vour job is to find it.
Here, A is a normalization factor and

|k|_ H

where E is the energy of the scattered particle.

Relating the scattering amplitude
and di f?ﬂl‘ﬂﬂ tial cross section

The scattering amplitude of spinless particles turns out to he crucial to
understanding scattering from the gquantum physics point of view. To see
that, take a look at the flux densities, 1., (the (lux density of the incident par-
ticle) and J, (the flux density for the scattered particle):

e =£[¢_v¢', 9"V, )
X PR,
F"J“_Ej.r{w'?ﬂ " P |.?¢llr]

Inserting your expressions [or ¢, and ¢, into these equations gives vou the
[ollowing, where fif, 8 is the scattering amplitude;

: file,
g 1. |4 #

- J,_=|A|=$|i{l.w] ’

Mow in terms of the flux, the number of particles alN{p, 0) scattered into dta
and passing throvgh an area dA = il is

i, 8) = J_rF b

285
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And the homogeneous selution s a plane wave — that is, it corresponds to
the incident plane wave;

A

To take a look at the scattering that happens, you have Lo lind the particular
soluthon, You can do that In terms of Green's funciions, so the solution to

(Ve ek Y (r)= 22 v(rhu(r) 5

wr)=Ae™" + ;‘:]—” JG{r =W w(r )

_L_je g
(e w7

where Glr—r")=

This integral breaks down fo

Glr r'll—d‘# elr rl‘[ﬁf 1.:‘

You can solve the preceding equation in terms of incoming and ‘or outgoing
waves, Because the scattered particle is an oulgoing wave, the Green's func-
tion takes this [orm:

F I _l:.irr
=)= gl

You already know that
w{r]:,-h;:"*'+%lﬂ{r—r']¥{r’]w{r’jd:r"

Ay

5o substitubing (Glr—r')= T into the preceding equation gives vou

dxlr-r
N e

Wiow, that’s an integral equation tor wir) | the wave equation — how do vou
go about solving this whopper? Why, vou use the Born approximation, of
COurses,
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The Born Approximation: Rescuing
the Wave Equation

['_'I-Iciz.r. vour dilemma is to sobve the following equation [or wir), where ¢, =
At

“{r]='ﬁ"_ gt jl v[r]ﬁf '

Y¥ou can do that with a series of successive approximations, called the Bom
approximalion {this is a famous result). To start, the zeroth order Born
approximation is just w.{r) = &, 0r). And substituting this zeroth-order term,
uiah e, into the first equation in this section gives you the lirst-order term:

wirl=g, - {r vl dd'r,

Znh Jl

which, using v, (r} = 9, {r} gives you

w,(rj=e, - hnﬂ_[l ; '\.-'[r Jé (r Jd'r,

You get the secund—n rI:IE:r term by substituting this equation into

w[r}-l::-__ Jl "l."l:.r w[r |d'r" -
w.(r)=a. 'E;;Tfr rl ki (n )dr

And substituting g, (ri=g, - Errh J ‘l.-’(r' (1, ) into the preceding

. . F-F
equation gives you !

w.(r)
B - 711Ir -[lr rlulr I9.. |:L ']ﬂrlr_—
-Hrih-[r vl r"‘“.[| -l"-“fr‘.lﬁ-[f]dr
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The pattern continues for the higher terms, which vou can find by plugging
lower-order terms into higher ones,

Exploring the far limits
of the wave function

Mow that vou've used the Born approximation (see the preceding section),
take a look at the case where ris large — in scattering experiments, r== r,
where ris the distance from the target to the detector and ¢ is the size of

. . i gl . R
the detector, What happens to ¥r | =¢. -5 flr v V{Flwlr)d'r | the
exact integral equation lor the wave lunction, when r==» r? Here's the answer:

F

W{F]_i!l“'l'iﬂ%jlidr v[r“}w[r']dlrr

r|

Because r == ¢, you can say that #lr— ¥l = kr— k& -, where & - ¢ i5 the dot
procduct of & and ¢ (& i5 the wave vector of the scattered particle), And

. -l .
Using the last two equations in ¥{r}=¢.. + ?:!?] |':, . Ve el jd'r
gives you -

l,:-rl:r:l=.45"""+"1€T#F{|_ﬁ,E'] r— =

And here

(6.8)= 5 [ rv(v () = —Eac{glv )

dler| i o
The differential cross section is given by 0.} = |J’[|;|:I.HJI| s which in this

case becomes dfl

‘fﬁ ';I:"-F'I * el ] ik e
1{1:1 II: lillf-.?hil-[ﬂ " 1||||::r :“Fl:r ::Id F = 2’::‘]:14

(afvw )]

289
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Using the first Born approximation

If the potential ks weak, the incident plane wave is onlv a little distorted and
the scattered wave i5 also a plane wave, That's the assumption hehind the
first Born approximation, which vou take a look at here, So if you make the
assumption that the pntential is weak, vou can determine from the equation

wiri=a, - EM fl v[r.m.[r.]n'r that

V) Vol e

Ohcav, soowhat is 40, ¢ Well
B8 )= 5L fo * TV Ju ()d'r

And this eguals the following, where o = k- &
v =i, R I .
flod)= 25 [e e vlrulr|d'r = 25 fe v e )a '

2af’

der{ .8 |
ol

And because = |.F{ .4 | . you have

clo (.8 |
K

_.[r‘. E T o]
-1;:-'}:|'|-[E 'l-{r | r|
When the scattering is elastic, the magnitude of & is equal to the magnitude
of &, and you have
I'.:i' = |k|:| -kl = 2& Si“':..l'.':l
where & is the angle between ky and &,

In addition, If vou say that Vi) is spherically svmmetric, and yvou can choose
the z axis along @, then ¢ = F = gr cosd’, 50

- T 2r
flee)= %jp Vi )d = 2::: _I[r”lf'[r’}:'ﬂ"_l[e *’~"“'sinﬂ'da“£dp’

That equals
)= —'[—J N e Je* et muHr.FH'Jr.h;n —EII Vi) sml,rc,n" |dr"
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dor( 4.9 dcr[dlr:i'

Because |"'|{'i’*-'5":||f , you know that {8 | | 80
delg.8] — ’
e ey

You've come far in this chapter — from the Schrddinger equation all the
way throwgh the Born approximation, and now to the preceding equation for
weak, spherically symmetric potentials, How about you put this to work with
some concrete numbers?

Putting the Born approximation to work

In this section, vou find the differential cross section for two electrically
charged particles of charge £ ¢ and L.e. Here, the potential looks like this;

1-"'|:.r::|. E-.E'r.-l_:

So here's what the differential cross section looks like in the first Born
approximation;

der{g.8) 427 'y’
ey gkt

|J5|n[qu’ :I.:Ir ‘

Fatend et bt 1
And hecause!s'"[""’ Jebr' = g - you know that

do(¢.8) 472 ey’
T gt

And because g = 2&sin{"/z), the following is true:

dole.) 4272 ey’ Z]Z'e’ <in .(ﬂ]
]

4 gkt 16E° H]
. P ; ; . E= Wk
where E is the kinetic energy of the incoming particle: &= Tu
Mow get maore specific; say that vou're smashing an alpha particle, 2, = 4,

against a gold nucleus, &, = 79, If the scattering angle in the lab frame is 60°,
what is it in the center-of-mass frame?
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Part VI
The Part of Tens

T_hE 5th Wave By Rich Tennant
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Chapter 13
Ten Quantum Physics Tutorials

In This Chapter
Understanding basic concepts and equations

Viewing illustrations and animations

WIET.I scientists start mixing talk of dice, billiard halls, and a possibly

undead cat-in-a-hox, vou know vou're dealing with a challenging sub-
ject. Luckily, you can find plenty of anline tutorials, some of them featuring

animation, to help you wrap vour brain around quantum physics. This chap-
ter presents a @ood starter list.

An Introduction to Quantum Mechanics

www . chemistry.ohlo-atate. eda/betha fom

Wihat is g wove fanction? What is an oritel?: An Introduction fo Quanfirn
Mechanics comes from Meal MeDonald, Midori Kitagawa-DeLeon, Anna
Timasheva, Heath Hanlin, Zil Lilas, and Sherwin J. Singer at The Ohio State
University, This site includes tutorials on probability, particles versus waves,

wave functions, and more, including Shockwave-based sound (thowgh if you
don’t have Shockwave Installed, that’s not & problem]},

Ouantum Mechanics Tutorial

wenw . gilestv.ocom/tubterials/guantum. html

Thizs cool tutorial is one of the Flash-animated Moderm Plivsics Tuwlorials by
Giles Hoghen, Extensively illustrated, this tutorial probes questions such

a5 wave-particle duality and offers a good general introduction to guantum
phyvsics,
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Grains of Mystique: Quantum
Physics for the Layman

wwh . Taqga ., org/fdocs  qp

This site provides good historical and experimental background info — and
thev've documented their sources and made some atlempis at peer review,

Ouantum Physics Online Version 2.0

W, cuantum-physics.polycechnigque, fr/indsx. html

This is a cool set of programs that run in your browser, giving simulations
of various quantum physics experiments, [t's by Manuel Joffre, Jean-Louis
Basdevant, and Jean Dalibard of the Ecole Polytechnigue in France, Lock [or

information on wave mechanics, quantization, quantum superposition, and
spin %,

Todd K. Timberlake’s Tutovial

facultywebh.berry.edu/ttimberlake/gchacs/gm.html

This tutorial is by Tedd K, Timberlake, assistant professor of the Department
of Fhyvsics, Astronomy, & Geology of Berry College in Georgia. 1t°s a fairly
brief but well-written introduction to the ideas of quantum mechanics.

Physics 24/7’s Tutorial

wwiw.physics247 .. comnf/physiocs=-tutorial /gquantum=-physics
Filliards.shtml

This is a text-hased tutorial from Physics 247, It includes material on guanta,
the uncertainty principle, and guantum tunneling (as well as some ads).
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Stan Zochowski’s PDF Tutorials

W, comp . uel cac.ukf~ewz S couroea S SM3ES5 S SH3

Stan Zochowski, from the department of Phyvsics & Astronomy at University
College London, put together these PDF-based tutorials on guantum phys-
ics, These are tutorial handouts for a Quantum Mechanics course at the

University College, and they serve as an excellent introduction to quantum
phyvsics,

Quantum Atom Tutorial

wwne oo lorado.edu/physics /2000 /quantumzons Sindex . html

Thiz is a fun, cartoon-centric tutorial on the quantum natore of the atom from
the University of Colorada Physics 2080 project,

College of St. Benedict’s Tutorial

ww  physics.ocsheju. edu/ oM/ Index. html

This is a comprehensive quantum physics tulorial from the College of L.

Benedict. It"s a good, more sertous, text and equations-based tutorial with
plenty of illustrations.

A Web-Based Quantum
Mechanics Course

electrond . phys.utk.eduS/gml/Modules.hem

This one’s from the University of Tennesses, and it's an extensive onling

course in gquantuem physics, It includes modules on square potentials, har-
maonic oscillators, angular momentum, spin, and so on,
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Chapter 14
Ten Quantum Physics Triumphs

In This Chapter
Explaining unexpected resulis
ldentifyving characteristics of the guanfum world
Developing new models

Ouﬂntum physics has been very successful in explaining many physical
phenomens, such as wave-particle doality, In fact, guantum physics

was created to explain phvsical measurements that classical physics cpuldn't
explain, This chapter is about ten trinmphs of quantum physics, and it points

vou to resources on the Web that examine those trivmphs for lurther
information,

Wave-Particle Duality

Is that particle a wave? Or is that wave a particle? That's one of the gquestions
that quantum physics was created to solve, because particles exhibited wave-
like properties in the lab, whereas waves exhibited particle-like properties.

These Web sites offer more insight:
¥ owwnw ., gllestv.ocomd tuborials,/gquantum. html

¥ oumnw . physics2d7 .. comdphysics-tuterial fgquantum-physlcs-
bPilliards.shtml

The Photoelectric Effect

Anather founding pillar of quantum physics was explaining the plofoelecrie
effect. in which experimenters shone light on a metal. No matter how strong
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the light, the energy of ejected electrons from the metal didn’t rise, [T turns
cut that the energy of electrons goes up with the frequency of the light, not
its intensity — which glves support to the light as a stream of discrete pho-
tons theory,

For more info on the photoelectric effect, check out wew o gl lestw | com
tutorialasfquantum. html.

Postulating Spin

The Stern-Gerlach experiment results couldn’t be axplained without pos-
tulating spin, ancther trivmph of quantum physics. This experiment sent
electrons through a magnetic field, and the classical prediction is that the
electron stream would create one spot of electrons on a screen — but there
were twor {corres ponding to the two spins, up and down},

This Wels site has more info: electroné . phys . outk. eda/gml /meduleas )
m&/spin.htm.

Differences between Newton’s
Laws and Quantum Physics

In classical physics, bound particles can have any energy or speed, but that's
not frue in quantum physics. And in classical physics, you can determine
both the position and momentum of particles exactly, which isn'l true in
guantum physics (thanks 1o the Heigenberg uncertainty principle). And in
guantum physics, you can superimpose states on each other, and have par-
ticles tunnel into areas that would he classically impossible,

You can find a nice discussion of the differences between classical and

guantum physics at faculoyweb berry . edu/tbimbarlake/gehaos/
gm.himl,

Heisenberg Uncertainty Principle

Che of the triumphs of quantum physics is the Helsenberg uncertainty princi
ple: Helsenberg theorized that vou can't simultanecusly measure a particle’s
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Square Wells

Like harmonic oscillators, guantizing particles bound in square wells at the
micra level was another trivmph for quantum physics. Classically, particles
in square wells can have any energy, bub quantum physics savs vou can only
have certain allowed energies.

There's plenty on the Web about i, Including these two good treatments;

o physics  osbedu . edy  OMS Todex . himl

M oalectront . phys .otk edofogml fmodu] esfpoedule?  him

Schridinger’s Cat

Schrédinger’s Cat is a thought experiment that details some problems that
arise in the macro world from thinking of the spin of electrons as completely
non-determined vntil vou measure them. For example, if vou know the spin of
one of a pair of newly-created electrons, vou know the other has to have the
ppposite spin, So if you separate two electrons by light years and then mea-
sure the spin of one electron, does the other electron’s spin suddenly snap

to the opposite value — even at a distance that would take a signal from the
lirst electron vears to cover? Tricky stulfl

For more, take a look at wenw . gilesty, com/tutorials  quantum.html.



Glossary

Hﬁl‘e'ﬁ- a glossary of commaon quantum physics terms;

amplitude: The maximum amount of displacement of an oscillating particle.

angular momentum: The product of the distance a particle is from a certain
point and its momentum measured with respect to the point.

annihilation operator: An operator that lowers the energy level of an eigen-
state by one level,

anti-Hermitian: The value you get when you take the Hermitian adjoint of an
expriession and get the same thing bhack with a negative sign in front of it

black body: A body that absorbs all radiation and radiates it all away.

Bohr radios: The average radiug of an electron’s orbit in a hvdrogen atom,
about 107 meters.

bound state: A state in which a particle isn't free to travel to infinity,
bosons: Particles with integer spins, including photons, pi mesons, and so on,

bra-ket notatlon: Abbreviating the matrix form of a state vector as a kel
or |w=, and ahbreviating the ket's complex conjugate, or fra, as <yl

center-of-mass frame: In scattering theory, the frame in which the center of
mass is stationary and the particles head toward each other and collide, See
also lal Irame.

central potential: A spherically symmetrical potential.

commute: Two operators commute with each ather if their commutator is
equal to zero. The commaiator of operators A and B is [A, B] = AB - BA,

complex conjugate: The number vou get by negating the imaginary part of a
complex number, The * symhbol indicates a complex conjudate,
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Compton effect: An increase of wavelength, depending on the scattering
angle, that occurs after incident light hits an electron at rest.

conservation of energy: The law of phyvsics that savs the energy of a closed
system doesn’t change unless external influences act on the svstem.

creation operator: An operator that raises the energy level of an eigenstate
by one level.

current density: See incident Husx,

electron volts {6V The amount of energy one electron gains falling through
1 walt.

diagonalize: Writing a matrix so that the only nonzero elements appear along
the matrix's diagonal.

differential cross section: In scattering theory, the cross section for scatter-
ing a particle to a specific solid angle; it's like a bull’s-eye.

Dirac's constant; Planck's constant {f = 6.626 = 1077 Jowle-seconds) divided
by 2n. It's represented by an & with a bar going through it.

Dirac notation: See bra-kel notation,

eigenvalue: A complex constant that represents the change in magnitude of
& vecior,

eigenvector: A vector that changes in magnitude but not direction after you
apply an operator,

elastic collision: A collision in which kinetic energy is conserved.

electric field: The force on a positive test charge per Coulomb due to other
electrical charges.

electron: A negatively charged particle with half-integer spin,
emisgivity: & property of a substance showing how well it radiates.
energy: The ability of a svstem to do work,

energy degeneracy; The number of states that have the same energy.
energy well: See potential well,

expectalion value: The mast probable value an aoperator will return.
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fermions: Particles with hall-integer spin, including electrons, protons, new-
trons, guarks, and so on,

frequency: The number of cycles of a periedic occurrence per second,

Hamiltonian: An operator for the total energy of a particle, both kinetic and
potential,

Heisenberg uncertainty principle: See uncertainty principle.

Hermitian adjoint A value, represented as AT, that replaces complex num-
bers with their complex conjugates, swaps bras and kets, and replaces opera-
tors with thelr Hermitikan operators.

Hermetlian operator: Operators that are equal to their Hermitian adjoints; in
other words, an operator is Hermitian i AT = A,

incldent flux: The number of incident particles per unit area per unit time,
inelastic collision: A collision in which Kinetic energy isn't conserved.

intensity (wave): The time-averaged rate of energy ransmitted by a wave per
unit of arem.

Joule: The MES unit of energy — one Newton-meter,
ket: See bra-ket notation,
kinetic energy: The energy of an object due to its motion,

lab frame; In scattering theory, the frame in which one particle is incident on
a particle at rest and hitg il. See also center-ol-mass frame.

Laplacian: An operator, represented by A, that vou use to find the Hamiltonian,

magnetic field: The force on a moving positive test charite, per Coulamb,
from magnets or moving chardes,

magnitude: The size or length associated with a vector (vectors are made up
of a direction and a magnitude],

mass: The property that makes matter resist being acoelerated.
momentum: The product of mass times velocity, & vector.

MES system: The measurement svstem that uses meters, kilograms, and
Seconds.
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Newton: The MES unit of force — one kilogram-meter per second=,
normalized function: A function in which the probability adds up to 1,

orbltals: [Nfferent angular momentum states of an electron, represented as
subshells in atomic structure,

orthogonal: Two kets, Ty= and lg= for which <y lé= = (.

orthonormal: Two kets, [ye and =, that meet the following conditions:
-ct,pll*.:n ='|:I; & |,|_|||+|".- = l:i'll'llﬂ -¢¢-|t|.~ - 1.

oscillate: To move or swing side to side regularly.
pair annihilation: The conversion of an electron and positron into pare light,

pair production: The conversion of a high-powered photon into an electron
and positron,

particle: A discrete piece of matter,

Pauli exclusion principle: The idea that no two electrons can occupy the
same state in a single atom.

period: The time it takes for one complete cvele of a repeating event,
perturbation: A stimulus mild enough that you can calculate the resulting
enerdy levels and wave functions as corrections o the lundamental energy
levels and wave functions of the unperturbed system,

photoelectric eifect: A result in which the kinelic energy of electrons emitted
from a piece of metal depends only on the frequency — not the intensity —
of the imcident light.

phaoton: A guantum of electromagnetic radiation. An elementary particle that
is its own antiparticle,

pi meson: A subatomic particle that helps hold the nucleus of an atom together.
Planck’s constant: A universal constant, &, that describes the relationship
between the enerdy and frequency of a photon. It egquals G626 = 100 Joule-
seconds.

positron: A positively charged anti-electron.

potential barrier: A potential step of limited extent; an electron may be able
to tunnel through the barrier and come out the other side.
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potential energy: An object’s energy because of its position when a force is
acting on it or its Internal configuration,

poetential step: A region in which the energy potential forms a stair shape;
a particle striking the step may be reflected or fransmitted,

potential well: A redgion in which there's a dip in the energy potential thresh-
old; particles without enough energy to overcome the barrier can become
trapped in the well, unable to convert the potential energy bo kinetic,

power: The rate of change in a system's energy.

probahility amplitude: The square root of the probability that a particle will
GCoupy a certain state,

probability density: The likelinood that a particle will occupy a particular
position or have a particular momentum,

quantized: Coming in discrete values.

quark: Particles that combine with antiquarks to lorm protoens, neutrons, and
0 On.

radian: The MES unit of angle — 2z radians are in a circle,

radiation: A physical mechanism that transports heat and energy as eleciro-
magnetic waves.

scalar: A simple number (withowt a direction, which a vector has),

Schrodinger equation: A wave function that describes how energies and
probable locations of electrons change over time,

simple harmonic motion: Eepetitive motion where the restoring lorce is pro-
porticnal to the displacement.

spherical coordinates: Coordinates that indicate location using two angles
and the length of a radius vector,

spin: The intrinsic andular momentum of an electron, classified as up or down,
synchrotron: A type of circular particle accelerator.

state vector: A vector that gives the probability amplitude that particles will
be in their various possible states.
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threshold frequency: If yvou shine light below this frequency on metal, no
electrons are emitted,

total cross secthon: In scattering theory, the cross section for any kind of par-
ticle scattering, through any angle,

tunneling: The phenomenon where particles can get through regions that
thev're classically forbidden to go.

ultraviolet catastrophe: The failure of the Baleigh-Jeans Law Lo explain black-
body radiation at high frequencies.

uncertainty principle: A principle that says it's impossible to know an
chject’s exact momentum and position,

vector: A mathematical construct that has both a magnitude and & direction.

velocity: The rate of change of an object’s position, expressed as a vector
whose magnitude is speed.

volt: The MES unit of electrostatic potential — one Joule per Coulomb,
wave: A raveling energy disturbance.
wavelength: The distance hetween crests or rroughs of a wave,

wave-particle duality: The observation that light has properties of hoth
waves and particles, depending on the experiment,

wave packet: A collection of wave functions such that the wave functions
interfere constructively at one location and interfere destroctively (o to
zera) at all other locations.

work: Force multiplied by the distance over which that force acts,
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A0 harmonic oscillators, [|84=187, 203
30 Schradinger equation, 170-172

(.

adjoints, 36-37
algorithm, Numeroy, 115
allowable bound stabes, energy of, 39
alpha particle, 246, 292
armplitude, 9, 303
angular frequency of motion, 263
angular momentum
in classical mechanics, 128
commutators, 130=131
defimed, 3003
deriving eigenstate equations, 134-137
eigenfunctions, 139=-160
eigenstates, 132-134
eigenvalies, 134-1349
equations, 148
lowering operator, 132-134
matrices, 140-147
momentum operalors, 130
orbital, 161=-162
overview, 128
position operators, L0
quantum numhber, 160, 222
raising aperator, 132-134
rotating disk, 1289130

rotational energy of diatomic molecule,

137-1249
spherical coordinates, 147-156
gpin operators, 161-162
annihilation operator, 94=55, 303
anti-Hermitian operators, 38-39, 41, 303
anti-particle, 18
antisymmetric wave functions, 237-239,
244, 246247, 230
atoms. See also hvdrogen atom
as composite particles, 246
discrete spectra, 31

with multiple electrons 233-230
Fauli exclusion principle, 250-2531
periodic table, 251-252

in quantum mechanics, 128

in rotating diatomic molecule, 147

ol e

barriers. See potential barriers

bagis-less vectors, 21

Bessel function, 196-197, 200-201

black-body radiation, 10=13, 303

Bohr, Miels, 217

Bohr radius, 62-64, 217, 229, 272, 303

Rorn approximation, 288-292, See also
scattering

hosans, 161, 245246, 303

hound states, 5960, 68, 303, See also free
particles

hox potentials, 177, 180-184, See also
rectangular coordinates

bra-ket notation, 26-29, 303

bras, 20-31

bull's eve analogy, 277

oo

Cat, Schrodinger's, 302
center-of-mass frame

cross sections, 201-283

Inh frame and, 277-243

dehned, 3003

cwverview, 277-278

scattering angle, 278280, 2492
central potential

angular part of ywir, 8, ¢, 193-104

defined, 303

radial part of yir, 8, ), 194=195

schrddinger equation, 192-103
charged oscillator

energy of, 265-267

wave functions, 267-268
classical physics, &



3 Ia Ouantum Physics For Dummies

cloud chambers, 18 differential cross section
coefficients of &, 258-259 Born approximation, 201
College of 3, Benedict's tutorial, 207 center-ol-mass frame, 281-282
column vector, &4 defnad, 276, 304
commutator lab frame, 251-282
of angular momentum vector, 130-131 particle scattering and, 276277
clefmed, 303 spinless particles, 285-286
finding, 37-38 differential operators, 158139
of operators, 37-39 Dvirac, Paul, 17, 26-27
unitary translermations, 21 Dvirac notation
complex conjugate abbreviating state vectors as kels, 27-28
as bra, 2% defmed, 303
defimed, 303 overview, 26-27
in Hermitian adjoinis, 26 writing complex conjugate as hra, 23
unitary operators, 50 Mrac’s constant, 304
complex number, 26 discrete apectra of atoms, 301
composite particles, 245 duakslit apparatus, 18
Compton, Arthur, 16
Compion effect, 16-17, 304
Compton wavelength, 17 . E .
conjugate, Hermitian, 36=37 eigenfunctions
conservation of energy, 304 lor angular mementum, 155160
continuous representations, 51-54 of angular momentum cperators L, and
cosmic ravs, 18 L2 147-149
creation operator, $4-05, 304 antisymmetric, 237230
cubic potential of L* In spherical coordinates, 151-156
degeneracies in energies, 183-184 of L._in spherical coordinates, 150151
enerdy of 3 isotropic harmonic svmmetric, 237-230
oscillator F.ll'ld.. IHT in t.:ﬂ'a] Ene'r'!_nlr ﬂ' Er'.:hE part1{||p_5l .LT'.E.
enerdy of ground state, 183 eigenstates
wave [unction, 184 angular momentum, 132-134
curréent density, 276, 304 B 34-16
B 132-134
. ﬂ L energy of @ | re=, 97
energy of @’ | r=, 9708
o state, 226, 251 first excited state, 103104
e Broglie, Louls, 18=20 hermite polynomials, 105=106
degeneracy lowering operator, 132-134
of 30 isptropic harmonic oscillator, 187 position space, 99-101
defined, 304 raising operator, 132-134
exchange, 244-245 second excited state, 14-105
grount state, 1831584 using o and a’, 97-98
of hadrogen atom, 222-238 wave function of ground state, 102-103
Stark effect, 273 cigenvalues
degenerate Hamiltonians, 269-271 defined, 304
diatomic molecule, rotational energy of, eigenvectors and, 43-45
137=130 exact energy, 264

dice, 24-26



finding, 47-49
lowering operator, 139-140
ralsing operator, 139-140
elgenvectors
dehned, 304
degenerate Hamiltonians, 271
eigenvalues and, 43-45
finding, 47-50
of operators, 46-47
Einstein, Albert, 13
elastic collision, 304
electric held
defined, 304
harmaonic oscillators in, 262-269
hydrogen in, 271-2T1
weak, 263
electron. See aiso spin
anti-particle, 18
Bohr radiug, 229
collisions, 242-243
Compton wavelength, 17-18
defmed, 304
emitted, 1415
kinetic energy, 206
location in hvdrogen, 228230
orhitals, 226228, 251-252
peripdic table, 251
photoelectric effect, 14-16
shell structure, 251-252
subishells, 251-252
waveslike properties, 19=20
electron beam, 19
electron volts, 304
electrostatic potential energy, 207
emissivity, 304
emitted electronsg, 14=15
energy, 9. 17, 265-267, 304
energy dedensracy
of 30 isotropic harmonic oscillator, 187
defined, 304
ground state, 131-184
of bevdlrogen atom, 222-228
Stark effect, 273
energy levels. See also Hamiltonian operator
degeneracy of, 223
determining, G2=64
floating cars analogy, 241
harmonic oscillators in electric felds, 264
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particle in box potential, 180=181
perturbations, 258
spherical coordinates, 190
energy state equations, M-16
enerigv wealls
hinding particles in potential wells, G
box potentials, 180181
enerdy levels, 62-64
escaping from potential wells, 6061
frec particles, 85-87
Gaussian wave packet, B8-89
infinite square potential wells, 61-68
nonzers solution, 76-78
normalizing wave function, 64-65
particle without enough energy, T4-TH
particle with plenty of energy, G581
physical particle with wave packet, 87-45
potential harriers, TH-85
reflection coefficient, T1-72, 76
Schridinger equation, 37
sguare well, 37-59
svmmelric square wells, shilting to, 67-68
time dependence in wave functions, 6367
transmigsion coefficient, 71-74, I6
trapping particles in potential wells,
o6
wave-function equation, B1-6G2
exchange operator, 235237, 244-245
expectation value
of anti-Hermitian aperator, 39
defined, 304
of Hermitian operator, 37
of operators, 34=36
of radius r, 228-230

o e

fatate, 226, 251
fermions, 160, 162-163, 245-246, 305
first excited state, 103-104, 217
irst-order corrections, 257, 250-260, 265
Aoating cars analogy, 239-241
foree
due to electrie field, 263
equation, harmonic oscillation, 32
MES unit. 306
potential energy and, 307
restoring, 184=185, 201



312

Ouantum Physics For Dummies

free particles, See also bound states
Schridinger equation, 85-89, 172-173
spherical coordinates, 195-196
in three dimensions, 172-177
time dependence, 175-177
total enersy equation, 174-175
wave packet, S7-89
x, v, and z equations, 173-174
frequency, 305

o5

g state, 251

gamma rays, 18

Gausstan wave packet, 88-80, 176177
Gerlach, Walther, 157

Goudsmit, 3amuel, 158

gradient operator, 23

Grains of Mystigue: (uanfum Physics for the

Layrman, 296
gravitons, 161
Green's lunctions, 287
ground stabe energy, 115, 183-184, 241

o He

h state, 251
Hamiltonian operator
A0 schrddinger equation, TT-1T2
clefined, 33, 305
eigenvalues, ol
harmonic oscillators, 93-94, 263
multi-particle system, 233
perturbations, 236, 258, 272-273
seroth-order approximation, 269
harmonic oscillators
aD. 184187
a and &', using, 97-08
annihilation operator, 34=05
classical, 22
creation operator, 94-95
defined, 91
eigenstates, 39-106
in electric fields, 262-269
energy of @ | o=, 95
energy of @' | n=, 97-98
energy state equations, 94-06

exact ground state energy, 115
first excited state, 103-10
Hamiltonians, 91-9
hermite polynomials, 105, 186
isotropic, 187, 2001-2003
Java code, 114-124
as matrices, 108113
position space, 99-102
protos, WG-107
quantized energy of, 301
guantum, $3-04
second excited state, 104-105
wave function of ground state, 102-103
Web sites, J01-302
harmonics, normalized spherical, 1553
Heisenherg uncertainty principle, 2021,
3043, 300-301, 305, 307
hermite polynomials, W5-104, 186
Hermitian adjoints, 36-37, 305
Hermitian conjugate, 36-37
Hermitian operators
anti-Hermitian operators, 38-39
commutator, 47
defned, 305
eigenvalues, 43
finding, 38-3%
replacing operators with, A1
unitary transformations, ol
Hilbert space
creating vectors in, 24-26
position veclors, 31
slate veclors, 28
Hoghen, Giles (tutorial creator), 295
Hooke's law, 91
hydrogen atom
allowed energies of, 216=217
center of mass, 208-200
in electric fields, 271-273
electron in, 205-204
enerdy degeneracy, 222-223
orhitals, 226-228
proton in, 2005206
quantum states, 224-226
radial Schrédinger equation, 21 1=220
Schradinger equation, 205=210
spin, 224=226
hydropgen wave functions, 28, 220-222
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identical noninteracting particles, 247=250
identity matrix, 32
identity operator, 33
incident current density, 71-72
incident Mux, 276, 305
incidlent light, 16-17
incident wave unction, 252-288
incoming particle, kinetic energy of, 292
inelastic collision, M5
inertia, rotational moment of, 138
inhnite square wells
adding time dependence to wave
functions, 63-67
determining energy levels, G2-i
finding wave-function equation, 61-62
normalizing wave function, G4-65
shifting to symmetric square wells, H57-68
trapping particles in, 61-68
instantanecus acceleration, 32
intensity (wavel, 305
interchange symmetry
antisymmetric wave functions, 237-239
exchange operator, 235-237
symmetric wave functions, 237-230
interference of waves, 20
An Introduction to Cuantum Mechanics
(tutarial), 285
isotropic harmonic cscillator, 187, 201-203

. I .

Java code
approximating wi=), 116=118
approximations, 114=116
creating, 116-124
one-dimensional Schrddinger equation, 114
running, 123-1244
writing, 118122

Joule, 305

s K o

kets
as basis-less slate vectors, 31
multiplying bras and, a0
normalized, 30
orthogonal, 32
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orthonormal, 32
Schwarz Ineguality, 31-32
state vectors as, 27-28

kinetic energy

defined, 305

of electron, 204
incoming particle, 292
mulbi-electron atom, 234
of proton, 206

radial, 193

rotational, 193

of

L* operator, 161-162
lah frame

center-pf-mass frame and, 277-281
cross sections, 281-282

dehnerd, 305

cwberview, 277-278

particles of equal mass, 282-283
scattering angles, 278-280

Laguerre polvnomial, 220, 272

Laplacian operator, 33, 34, 170, 192, 303
light

black-body radiation and, 14
frequency, 12

incident, 1617

as particles, 13-18, 300
photoelectric effect, 14-16, 299-30{
photons, 15, 19, 306

scattering, 16-18

gpectrum, 12

gpeed of, 1T

wavelength shift, LT

light waves, &, 12
limited potential

nonzero solution, 76-78

particle without enough energy, 74-78
particle with plenty of energy, 69-73
reflection coefficient, T1-T2, TG
transmission coctficient, T1-72, 16

linear momentum operator, 33
linear operator, 36
lowering operator

angular momentum eigenstates, 132=134
finding eigenvalues, 139=144

harmonic oscillators, 97=-08, 101, 110=111
gpin, 162
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magnetic field, 3035
magnitude, 3035
mass, 17, 03, 263, 305
matrices
angular momentum, 140-147
harmonic oscillator, 10E=113
Fauli, 163-166
spin '/, 163-163
matrix mechanics, 31
matriz representations, 31-a24
MES svstem, 305
Modern Phiysics Titorals, 295
momentum, 305
momentum cperator, 53, 93, L
momentum vector, I 51, 179
multi-electron atom, 235-230
multi-particle svatem
antisvmmetric wave functions,
244, MG-247
antisvimmetry, 244
atom with multiple electrong, 233-233
exchange degeneracy, 244-243
exchange operator, 235=237
floating cars analogy, 239242
ground state energy, 241
Hamiltonians, 232-253
identical noninteracting particles,
2472581
interchange symmetry, 235239
Iosing identity, 242-243
overview, 212
Pauli exclusion principle, 250-251
pericdic table, 251-252
steady Hamiltonian, 244245
svmmetric wave functions, 244, 246-247
svmmetrization postulate, 245-246
symmetry, 244
total energy equation, 233, 241
two-particle svstems, 248249
wave hunctions, 232-233, 247-250
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MNeumann function, 196-197, 200=201
neutrons, 246
MNewton (unit), 306

Newton's laws, 300

nondegenerate Hamiltonkans, 256-257
normallzed functien, 64-635, 306
normalized ket, 10

normalized spherical harmonics, 135
nucleons, 246

number eperator, g5

MNumerov algorithm, 115
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operators, 32-33. See alvo specific
pperalors by narne

orbital angular momentum, 161-163, 182

orbitals, 226-227, 251, 304

orthogonal kets, 32, 3G

orthonormal kets, 32, 306G

ascillation, 3

s e

o state, 226, 2531
pair annihilation, 18, 306
pair production, 17-18, 306
particles, 9, [8=20, 39-60, 92-03 263, 306
Pauli exclusion principle, 221, 250=251, 306
FPauli matrices, 163=166
period, 306
periodic table, 251-252
permutation operator, 248
perturbation theory, 2535-256, 264-269
perturbations
coefficients of &, 258-259
clefined, 306
degenerate Hamiltonians, 260-271
energy levels, 258
energy of unperturbed system, 356-257
equations, 257-238
first-order corrections, 257, 259-260
Hamiltonian, 236 258 272-273
harmonic nscillators in electric Belds,
262-264
hydrogen in electric Gelds, 271-273
nondegenerate Hamiltonians, 236-262
second-order corrections, 237, 261-262
time-independent, 255-256
wave [unction, 235
photoelectric effect, 14, 209-30d, 306



photons, 15, 19, 306
Physics 2475 Tutorial, 295
pl meson, 246, 306
Planck, Max, 12=13
Flanck's constant, 13, 17, 306
Flanck's equation, 13
Planck's guantization rule, 13
position operators, 93
position vectors, 31, 32-33
positron, 306
potential barriers
defined, 306
averview, TB-T9
reflection coefficient, 8351
Schrbdinger equation, T9-51
funneling, 54-85
Wentzel-Kramers-Brillouin
approximation, &5
when E <V, 81-83
when E =V, 79-81
potential energy, 193, 207, 234, 230, 307
potential step, 74, 307
potential wells, 39-61, E3-84, 307
power, 307
principal quantum number, 216, 222, 351
probability, 21-22
probahbility amplitudes, 25 307
probability density, 21, 307
proton, 106G-107, 115, 205206, 246
profon/electron system, center of

mass, 208
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quantization-condition equation, 216=217
Ouantem Atom Tutorial, 297
quantum mechanics, 128
Quaatem Mechanics Twloral, 205
quantum numhber
angilar momentum, 128 131-133, 136,
160, 222
of ith particle, 240, 249
orlitals, 226
Pauli exclusion principle and, 2530-251
pericdic table and, 251-232
principal, 216217, 222
of quantized states, &3
guantum state of hydrogen atom, 222-223
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radial, 215-21&
radial part of wir, B, ¢), 1594
spin, 160
total energy of particle, 151
quantum oscillation, 5304
Cleanten Physics for the Layman
(tutorial), 290
Duantern Plvsics Online Yersion 20290
quanturm tunneling, 201, 301
quark, 246, 307
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radial equation, 194=195
radial kKinetic energy, 193
radial guantum number, 215-216
radial Schrddinger equation
allowed energies of hvdrogen atom,
216-217
principal quantum number, 216
radial quantum number, 215-216
solutions, 212-215, 218-220
solving for large r, 212
solving for small r, 211-212
radial wave [unction, 221-222
radian, 307
radiation, 10=13, 303, 307
radivs vector, 181
raising operator, 38, 132-134, 1359-144,
162, 166
Kaleigh-Jeans Law, 12
rectandular coordinates
3D harmonic oscillators, 184-1587
3D Schridinger equation, 169-172
box potential, 177-184
cubic potential, 183184
energy levels, 180-15]1
free particles in 30, 172=177
Sehrddinger equation, 17T
versus spherical coordinates, 190-191
time dependence, 175-177
total energy equation, 174-175
wave function, 181-182
x, v, and z equations, 173-174
reduced mass, 200
reflection coefficient, T1-72, 16, 83-84
relative probability, 24
relativity, theory of, 18
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restoring force, 184=183, 201
Roll operator, 34-36

rotational energy, 128, 137-139
rotational kinetic energy, 103
row aperator, dd

Rydberd constant, 272-273
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& state, 226, 251
5 operator, 162
scatterad wave function, 2835
scattering. See also scatlering angle
Born approximation, 288-292
center-ofl-mass frame, 277-275
cross section, 275277
differential cross section, 276=277
incident flux, 276
lab frame, 277-278, 282283
overview, 275
particles of equal mass, 282-283
spinless particles, 283-288
total cross section, 277
translating cross sections, 281-2582
scattering angle
center-ol-mass frame, 292
Compton effect, 304
cross section, 292
between frames, 275282
of light, 17
as solid angle, 276
franslating cross sections, 281-282
Schrddinger, Erwin, 322
Schrddinger equation
3D, 169-172
30 harmonic oscillators, 186
approximating wi=), 116=118
approximations, 114=116
central potential, 192153
defined, 37, 307
floating cars analogy, 241
free particles, 85-89, 172-173
foor hydrogen atom, 2005-210
Java codde, 116-123
Numeroy algorithm, 115
one-dimensional, 114
particle energy, G2

potential barrlers, 82
in potential skep, 74
radial equation, 212-215
radial quantum number, 215-216
radial solution of, 215-23
simplifving, for hydrogen, 208-210
solving for large », 212
solving for small r, 211-212
solving for (1), 210-211
solving for wir), 211-222
splitting, for hydrogen, 208-210
timedependent, 66, 170, 207, 209
wave mechanics, 34
Schridinger's Cat, 302
Schwary inequality, 31-32
second excited state, 104-105, 217
second-order corrections,
257, 261262, 265
simple harmonic solution, 307
speed of leht, 17

spherical Bessel function, 196=197, 200-201]

spherical coordinates
angular part of wir, 8, ¢, 193-104
central potential, 192-195
conversion equations, L&
defined, 158, 191, 307
eigenfunctions of L7, 151-156
eigenfunctions of L, 150-151
energy levels, 190
free particles in 30, 195-196
isotropic harmonic oscillator, 200=203
limits for large o, 197
limits for small , 132
normalized spherical harmonics, 193
overview, 147<148, 189
radial part of ywir, @, o), 194=195
radius vector, 181
versus rectangular coordinates, 190-1591
Schradinger equation, 192-193
spherical Bessel unction, 196-197
spherical Neumann function, 196-197
spherical sguare well potential, 198-2041
wave function, 195
spherical Laplacian operator, 192
spherical Neomanm function,
196=197, 200=20
spherical square well, 198-201
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angular momentum, 155-159
bosons, 161
defined, 157, 307
down, 123
gigenstates, 155-160
fermions, 160, 162-165
Pauli matrices, 1651606
postulating, 300
quantum states, 224-226
up, 158
spin '/, matrices, 163-163
spin magnitude, 163
spinless particles, Z83-288
square well. See also infinite square wells
energy of allowable hound states, 50
overview, 37-5l
guantized energy and, 302
for the region 0 < r= g, 199-200
for the region r = o, 200-201
spherical, 198-201
trapping particles in, 28
wave function, 28
Web sites, 302
Stark effect, 211
state vectors
adjoints, 3637
anti-Hermitian operators, 38359
basis-less, 11
bras, 41
commutators, 37=39
complex conjugale as bra, 29
conlinuous représentations, 51=54
defned, 307
Dirac notation, 26-32
elgenvalues, 43=50
eigenvectors, 43-5{
expectation value, 34-36
Heisenberg uncertainty principle, 3943
Hermitian operators, 36-17
in Hilbert space, 24-26
kets, 27-28, 31
linear operators, A
matrix representations, 51=54
multiplying bras and kets, 30
operators, 32=34

Index 3 T 7

Schwarz Ineguality, 31-32

unitary operators, 50-51

wave function, 53
steady Hamiltonlan, 244-245
Sterm, Otto, 157
Stern-Gerlach experiment, TH7-158, 300
subshells, 251-252
symmetric square wells, 67-68
symumetric wave functions, 237-239, 244,

246-247, 250

symmetrization postulate, 245-246
synchrotron, 307
5 operator, 162
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A0 harmonic oscillators, TH4=-18T, 2003
A Bchridinger equation, 1T0-172
three-or-more-particle svstems, 245-250
threshold frequency, 15, 3038
Timberlake, Todd {physics professor), 206
time dependence, 175-177
time-dependent Schrddinger eqguation,
66, 170, 206
time-independent wave lunction, 176
total cross section, 277, 308
total energy, 30 Schrddinger equation, 111
total energy equation, 174-175, 234, 240
transmission coefficient, 71-72, 74, 83-584
tunneling, 84-85, 308
tutorials
College of 5t, Benedict's, 297
Graing of Myslique: Quwavdum Miveics for
the Layvman, 296
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Mechanics, 295
FPliveics 24775 296
Qurefurm Alom Tedorfal, 200
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Orantum Physics Online Version 200 206
Stan Zochowski's POF, 207
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Web-based quantum mechanics
course, 297
two-particle systems, 2458-240
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Uhlenbeck, Gegrge E.,, 158

ultraviolet catastrophe, 12, 308

uncertainty principle, 20=21, 39-43,
3003001, 305, 308

unitary operators, M-51

unity operator, 23

unperturbed energy, 237, 268, 273

unperturbed system, 256-258
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vectors, See also state vectors
basgis-less, 31
defned, 308
in Hilbert space, 24-26
as kets, 27-28
position, 21, 52-53
of probability states, 24
schwarz inequality, 31-32
veloeity, 277-274, 308
vilt, 308
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wave, 15-20, 308

wave function
adding time dependence bo, 6367
antisvmmetric, 237-239, 244, 246-247
Born approximation, 288-282
of charged oscillator, 267-268
cuhble potential, 184
electron spin, 225

ground state, 184
intensity of, 21-22
multi-particle system, 332-233, 247-250
normalizing, 64-65, 181-183
perturbations, 253
proton in harmonic cscillation, 107
raclial, #21-222
spherical coordinates, 195
for stabe vector, 53
svimmetric, 237-239, 244, 246-247
of three-or-more-particle svstems,
249250
time-independent, 176
of two-particle systems, 2458-249
wave mechanics, 53-54
wave packet, 87-80, 1TE-177, 303
wave vector, 2, 18
wavelength, 3, 1617, 19, 304, 303
wavelength shift, 17
wave-particle duality, 18-20, 209, 308
Web-based quantum mechanics
course, 297
Wells. See energy wells
Wentzel-Kramers-Brillouin
approximation, &5
Wien, Wilhelm, 12
Wien's formula, 12
waork, 308
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z projection, 163
zeroth-order approximation, 269
Zochowski, 3tan (phyvsics professor), 207
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The Hamiltonian

Ore of the central prablems of quantum mechamcs s to calewlate the energy levels of 8 system, The
eneigy aperator, called the Hamditanian, H, gves you the tetal epergy, Finding the energy bevels of a
system breaks down to finding the sigenvalues of the problem

Hjpr)=E|w)

Hera's the same equation in matrix terms;

det H, -E H, H, H,, e =10
H., H.-E H, H.,
H,, H,, H,-E H,,
H, H., H,, H,-E

Hll;-'rr}__-";llulj 1|."|'J"|II|.I'|'I‘":| Eyfr)

The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle says that the better you knee the pasition of & paricle, the less yau
Enawy the mamentem, and vice varsa, Inthe x directicn, for example, that looks like this;

AvAp_ %

wihara Ax is the measurament uncartainty in the particle’s x position, Ag,_ is its measurement uncertainty in its

mamantum in the ¥ direction, and { = &2

This relation halds for all three dimensians:

AvAp_ =

AzAp_ = o

The Schradinger equation dascrbes the enargies and prebabla lopations of electrons. The quantum phys-
g5 imthis book is largely about solving this differantial equation for a variety of potantials, Yirk

HI||.-'|:J"}= Err-r A r)
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